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1.  IntroductIon 
High altitude (HA) is defined as 9000 ft (>2400 m) and 

above because at this altitude most of the people develop sign and 
symptoms which are associated with acute mountain sickness 
(AMS). Low landers residents (<1500 m) rapidly ascending to 
high altitude (>2400 m) and specially at very high altitude are 
at risk of developing high altitude illness i.e; Acute mountain 
sickness (AMS). If medical attention is not sought, this may 
lead to life threatening high altitude pulmonary edema (HAPE) 
or high altitude cerebral edema (HACE). The symptoms 
of AMS occur within few hours after ascent and become 
prominent after first night spent at high altitude. If further 
ascent is not attempted, the resolution of AMS occurs by 2 – 3 
days of residence. In emergencies/war like situations, military 
personnel could be inducted to high altitude within a short time 
and may be deprived from appropriate acclimatisation. As a 
result, some of them are at risk for physical problems related 
to high altitude disorders, which could be unpleasant and may 
even lead to fatal casualties1. In our earlier studies we observed 
the effect of altitude on heart rate variability2, cardiovascular 
response3, respiratory physiology4, chemoreceptor sensitivity5,6, 
sub-maximal and maximal exercise responses7,8 through the 
preliminary days of acclimatisation at different altitudes. At high 
altitude, a sequence of pulmonary and cardiovascular alteration 
occurs to maintain sufficient oxygenation of the different 
systems like, increase in heart rate, cardiac contractility and 
cardiac output. The critical initial adaptive changes to altitude 
induced hypoxemia are pulmonary artery vasoconstriction and 

peripheral and cerebral artery vasodilatation at the vascular 
level3. The altitude induced exhilaration of cardiovascular 
system comes to its maximum effects during the initial few 
days and progressively establishes a steady state condition3. 
After these modifications have reached the optimal level, 
any further stimulation may have harmful effects and may 
cause high altitude related diseases like HAPE or HACE1. 
Immediate response to high altitude is augmented ventilation 
and considered to be one of the most important indices of 
altitude acclimatisation. Ventilatory acclimatisation to altitude 
is characterised by progressive increase in ventilation that 
leads to an increase in pulmonary gas exchange and oxygen 
saturation level. Augmented ventilation and diuresis during the 
initial few days at high altitude may contribute to easing of 
AMS symptoms with altitude acclimatisation9. Acetazolamide 
is the ‘gold standard’ pharmacological intervention for 
prevention of AMS upon rapid ascent to high altitude and is 
in common practice1. Acetazolamide’s complex mechanism 
of preventing altitude sickness involves renally stimulated 
metabolic acidosis ensuing in diuresis and increased ventilation, 
and supression of cerebrospinal fluid production10. However, 
acetazolamide has its side effects which include gastric distress, 
constipation, fatigue etc11. An encouraging approach is the use 
of intermittent hypoxic exposure (IHE) at sea level which helps 
in acclimatisation and reduces the incidence of AMS. 

IHE can be administered using either hypobaric hypoxia 
or normobaric hypoxia. Hypobaric hypoxia is simulated 
by decreasing the barometric pressure, while normobaric 
hypoxia is induced by reducing the fraction of oxygen in 
inspired air (FIO2). Currently, intermittent normobaric hypoxia Received : 08 September 2017, Revised : 28 February 2018 
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training is being extensively used to improve physical fitness 
of an individual12-14. However, the study on the efficacy of 
intermittent normobaric hypoxia on reducing incidence of 
AMS and improving physical work performance on subsequent 
ascent to actual high altitude (hypobaric) environment is very 
limited. Nagasaka and Satake15 first hypothesised that IHE 
in hypobaric chamber could induce pre-acclimatisation more 
effectively than chronic hypoxia. They exposed the subjects 
for consecutive days simulating 6000 m (354 mm Hg) for 5 
h and 8000 m (270 mmHg) for next 1 h observed an increase 
in VI and PaO2 in hypobaric hypoxia, indicating the initiation 
of ventilatory acclimatisation. The training in intermittent 
normobaric hypoxia at sea level and its effect on AMS is very 
limited16,17. Today there is only one study that has reported the 
use of normobaric hypoxic exposure during sleep at sea level 
and its effect on AMS during subsequent exposure to hypobaric 
hypoxia18. None of the previous studies have assessed the effect 
of intermittent normobaric hypoxia exposure (IHE) at sea level 
and its effect on the incidence of AMS during acute exposure 
to 3500 m altitude in altitude in Indian military personnel. The 
objective of this study is to see the efficacy of intermittent 
normobaric hypoxia exposure at sea level for the prevention of 
prevalence of AMS during acute exposure to 3500 m altitude 
in Indian army soldiers.

2.  MEtHodS
The study was conducted on 24 Indian Army volunteers. 

All the volunteers were male, sea level residents and non-
smokers. None of the volunteers had been to high altitude 
within the previous 3 months. All the volunteers were medically 
fit. Experimental group comprised of 14 Army volunteers (age 
24.71 yrs + 3.15 yrs, height 172.36 cm + 4.60 cm, body weight 
were 66.68 kg + 9.63 kg). Control group consisted of 10 Army 
volunteers (age 25.90 yrs + 4.63 yrs, height 174 cm + 3.53 cm, 
body weight were 64.45 kg + 0.08 kg). The study protocol was 
approved by the Institute’s Ethical Committee, the volunteers 
were made aware of his right to withdraw from the study at any 
point in time without prejudice and an informed consent was 
taken from all the volunteers. The base line study was conducted 
at DIPAS, Delhi (barometric pressure 740 mm Hg) and 20 oC 
– 24 oC with a relative humidity range of 40 per cent – 50 
per cent was maintained in the laboratory. After recording 
the base line data for two days, volunteers were allowed 
to breath 13.5 per cent O2 (altitude - equivalent 3500 m) 
in normobaric hypoxia chamber for one hour (pre-hypoxic 
challenge). On the next four consecutive days, the volunteers 
were exposed at 12 per cent O2 (altitude - equivalent 4350 
m) in normobaric hypoxia chamber for four hours per day. 
On the fifth day, volunteers were again exposed to 13.5 per 
cent O2 (altitude - equivalent 3500 m) for one hour (post 
–hypoxic challenge). Pulse oxygen saturation (SaO2) level 
in blood and heart rate were continuously monitored during 
exposure. On the very next day (sixth day), the volunteers 
were inducted by air, within 24 hours to an altitude of 3,500 
m (barometric pressure 483 mmHg), at Leh, India, the flight 
duration is of 55 min - 60 min. At Leh all the parameters 
were recorded in the morning for six successive days, the 
ambient room temperature was maintained between 20 oC 

and 25 oC (Fig. 1). The first recording of the parameters was 
completed early next morning (within 24 h of arrival at HA). 
Heart rate and oxygen saturation were recorded. Ventilatory 
parameters like VE, VO2, ventilatory drive (VT/ Ti, where Ti 
is the inspiratory time) were recorded with the volunteers in 
sitting position at both the altitudes, using breath-by-breath, 
open-circuit metabolic measurement system (Model K4b2 
mobile breath-by-breath metabolic system, Cosmed, Italy) 
calibrated with certified gases and volume standard. Venous 
blood samples were drawn in fasting condition at sea level and 
at high altitude residence (3 days and 6 days) for estimation of 
erythropoietin (EPO, ELISA, BIOMERICA, USA). 

 
3.  IntErMIttEnt HyPoxIc ExPoSurE

Before Intermittent hypoxic exposure (IHE), pre-hypoxic 
challenge and post – hypoxic challenge were performed at sea 
level (13.5 per cent FIO2, altitude equivalent 3500 m, Leh) 
in the morning after a breakfast using hypoxic air, in which 
hypoxic air was produced by injecting medical grade nitrogen 
through solenoid valve into normobaric hypoxia air chamber. 
During IHE exposure, hypoxic air was breathed continuously 
for four hours per day for four days in experimental group of 
volunteers in a sitting relaxed position. Hypoxic air consists of 
12 per cent oxygen and balance nitrogen (12 % FIO2, altitude 
- equivalent 4350 m, final SaO2 in blood was around 87 % - 88 
%). Throughout the training period, volunteers were carefully 
monitored. None of the volunteers presented any symptoms of 
mountain sickness or physical deterioration during normobaric 
hypoxia exposure. Control group of volunteers were breathing 
ambient air i.e; 21 per cent oxygen (Sea level, SaO2 in blood 
was 98 % - 99 %).

4.  AcutE MountAIn SIcKnESS SyMPtoM 
ScorES
Incidence of AMS in IHE and control group of volunteers 

at both the sea level and high altitude locations were scored 
with the help of the standard Lake Louise questionnaire 
(LLS)19. Total LLS scores more than > 3 (range 0 to 15) were 
considered as AMS.

Figure 1. Study design (Intermittent normobaric hypoxic exposure at 
sea level followed by actual hypobaric hypoxic exposure in 
field condition).
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5.  StAtIStIcS
All data were presented as mean ± SD. The statistical 

analysis for the multiple comparison of various physiological 
responses within the group at different conditions has been 
made by the method of two-way classification of analysis 
of variance (ANOVA). Unpaired t–test was applied for 
comparison of various physiological responses between 
two groups. Probability values of <0.05 were considered as 
statistically significant.

6.  rESultS And AnAlySIS
The incidence of AMS determined from LLS scoring 

increased from SL to high altitude on acute induction. The 
prevalence and severity of the symptoms of AMS was 
significantly less (P<0.05) in IHE treated experimental group 
as compared to control group on first two days of exposure 
at altitude. On day 1 at HA, 60 per cent of control group had 
symptoms of AMS while the IHE treated group showed only 
5 per cent (P<0.05). On day 2 at HA, the incidence of AMS in 
control group declined to 40 per cent. The experimental group 
did not show any symptoms of AMS. On day 3 onwards no 
one from either group suffered from any symptoms AMS as 
shown in Fig. 2.

At SL, there was no differences of SaO2 between the 
control and IHE treated groups (experimental: 97.93 % + 
0.27 %; control: 98 % + 0.18 %). Pulmonary gas exchange 
as measured by SaO2 was improved around 2 per cent from 
pre-hypoxic to post -hypoxic challenge (13.5 % FIO2). On 
acute exposure to 3500 m high altitude, both the groups 
showed statistically significant decrement of SaO2 (P<0.05). 
However, the experimental group (IHE treated) showed less 
drop in SaO2 (around 2 %) value on day 1 in comparison to 
control (experimental: 93.57 % + 1.34 % vs control: 91.58% 
+ 1.80 %) (P<0.05). At high altitude, from day 2 onwards 
SaO2 value increased gradually (P<0.05) in both the groups, 
but the experimental group maintain relatively higher value in 
comparison to control and maintained this trend up to day 6 
(expertmental: 95.50 % + 0.09 % on day 6 vs control: 94.50 % 
+ 0.75 % on day 6) as shown in Fig. 3.

Basal value of pulmonary ventilation (VE) did not show any 
statistical significant difference both in IHE and control groups 

(experimental: 9.79 % + 1.89 %; Control: 9.54 % + 1.51 %). On 
exposure to HA, both the groups showed significant increase in 
ventilation (P<0.05) on exposure to altitude as shown in Fig. 4. 
At high altitude, VE of IHE treated group reached its maximum 
value on second day of induction and remained elevated on 
subsequent days. Whereas the control group showed a gradual 
rise at HA and reached its maximum by day four. The VE values 
of control group was also significantly (P<0.05) lower on day 1 
and day 2 in comparison to IHE treated group.

Basal oxygen consumption (VO2) at sea level for 
experimental and control groups of volunteers was similar 
(experimental: 255.59 + 58.35; Control: 242.4 + 39). On 
induction to 3500 m altitude, experimental groups showed 
a significant rise in VO2 on day 1 of exposure and thereafter 
it remains almost same levelas shown in Fig. 5. Whereas the 
control group showed a gradual rise of VO2 at high altitude 
and reached its maximum value by day four. The VO2 values 
of control group were significantly (P<0.05) lower on day 1 in 
comparison to IHE treated group.

VT/Ti, as an index of ventilatory drive was similar in 
both the groups (experimental: 0.37 + 0.08; Control: 0.38 + 
0.09) at sea level. Ventilatory drive increased significantly in 
both the groups at high altitude. However, IHE treated group 
showed significantly (P<0.05) higher value on day 1 and 2 in 
comparison to control group as shown in Fig. 6.

 EPO values were similar at sea level in both the control 
and IHE treated groups. On exposure to HA (day 3), EPO 
value increased significantly (P<0.05) in IHE treated group 
in comparison to control (experimental: 23.86 + 3.14; control 
19.43 + 2.97). From day 3 to day 6 of high altitude residency, 
EPO value declined in both the groupsas shown in Fig. 7.

7. dIScuSSIon 
The present study was carried out to assess the 

efficacy of intermittent normobaric hypoxia exposure 
at sea level on the occurrence of AMS during acute 
ascent to 3500m altitude in Indian soldiers. The results 
of this study indicated that the incidence of AMS during 
hypobaric hypoxia exposure to 3500 m was reduced 
significantly in IHE treated group. The incidence of 
AMS in un-acclimatised persons rapidly increases from 

20 per cent to 70 per cent at the altitude between 
2000 m to 3960 m. The immediate response to acute 
hypoxia is augmented ventilation, which is mediated 
through chemoreceptor to compensate the hypoxic 
stress6. Our observation on VE at 3500 m indicates a 
better and fast respiratory adaptation for (IHE) treated 
group. This improves blood oxygenation (SaO2) and is 
known to be the most effective mechanism of altitude 
acclimatisation during the initial days of residence at 
high altitude. The correlation between high level of 
SaO2 and reduced acute mountain sickness (AMS) have 
already been reported in hypoxia condition20. Study also 
showed significantly higher level of SaO2 in the IHE 
group during initial days of hypobaric hypoxia exposure 
at 3500 m altitude in comparison to control. Normobaric 
hypoxia exposure induces a comparable degree of 
ventilatory acclimatisation in different combinations 

Figure 2.  Symptoms of AMS score in different days at HA (3500 m), 
Values are mean ± Sd. 

*Significantly different between groups, P < 0.05.
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Figure 3. Sao2 changes at sea level and different days at HA (3500 
m), Values are mean ± SD. * Significantly different between 
groups, P < 0.05.

Figure 4. Ventilation (VE) responses at sea level and different days at 
HA (3500 m), Values are mean ± SD. *Significantly different 
between groups, P < 0.05. 

Figure 5. oxygen consumption at sea level and different days at HA 
(3500 m), Values are mean ± SD. *Significantly different 
between groups, P < 0.05. 

such as altitude, exposure duration and number of 
hypoxic exposure / sessions21. The studies on the effect 
of (IHE) at sea level and its possible outcomes on 
reducing the susceptibility to AMS during subsequent 
high altitude sojourn are very limited. Only two 
laboratory based studies have showed a significant 
reduction in the incidence and severity of AMS after 
IHE at sea level in laboratory based condition17,18. The 
effect of intermittent hypoxia (normobaric) and its 
physiological outcome during subsequent exposure to 
actual field condition (hypobaric hypoxia) is scanty. 
Schommer22, et al. studied the normobaric hypoxia 
exposure of 14 h - 18 h in 12 per cent - 16 per cent 
O2 for 70-90 min per day at the rate of 3 days per 
week for four weeks along with an overnight stay 
at 3611 m on arterial blood gases or AMS during 
subsequent hypobaric hypoxia residence at 4559 m. 
The effect of repeated normobaric hypoxia exposure 
in un-acclimatised sea level residents during sleep for 
7.5 h in each night for seven consecutive days on 
acute mountain sickness and sleep during subsequent 
exposure to hypobaric hypoxia at 4350 m altitude showed 
significantly higher SaO2 and AMS upon awakening 
was lower18. Our study is also first to report where 
volunteers breathed normobaric hypoxia air (12 % 
FIO2) for four hours per day for four consecutive days 
on acute mountain sickness at 3500 m high altitude. 
The results of this study indicated that normobaric 
hypoxia air breathing for four hours per day for four 
consecutive days showed the 2 per cent higher level 
of SaO2 (at 12 % FIO2, altitude equivalent 4350 m 
altitude) in experimental group of volunteers. Muza21, 
et al. in a comprehensive review recommended that 
an IHE exposure of altitude greater than 4000 m and 
daily exposure of no less than 1.5 h, repeated over 
a week or more are requisite to effectively develop 
altitude acclimatisation. Previous study from this 
laboratory compared the gradual ascent in four days 
from 2150 m to 3500 m with air induction in one 
hour23. The result showed the incidence and severity 
of AMS was more in air inductees in comparison to 
road inductees. This study also showed higher level 
of resting ventilation and oxygen saturation in road 
inductees on initial days at 3500 m altitude. Our study 
also showed the significantly higher resting SaO2, VE 
and also ventilatory drive (VT/Vi) in the IHE treated 
group in comparison to control in initial two days 
at high altitude. IHE group of volunteers showed 
significant Increase in VO2 at high altitude is also 
considered as an index of altitude acclimatisation. 
Increase VO2 may be due to increase in ventilation 
as well as the changes in different biochemical indices 
like increase in HIF and its derivatives like EPO, 
HOG, NO etc which facilitates oxygen utilisation 
system at the cellular level. The low incidence of 
AMS in experimental group of volunteers at 3500 
m altitude (13.5 % FIO2, altitude - equivalent 3500 
m) in IHE treated group may be due to increase 
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They show relatively lower value of VE, VT/Vi as well 
as lower value of SaO2. It appears that the required 
magnitude of hyperventilation has not been achieved 
immediately for control group but occurs gradually, 
during which period they were undergoing a higher 
level of hypoxic stress. In the present study showed 
that only 5 per cent of IHE treated group suffered 
from AMS whereas in the control group it was 60 
per cent on first day of induction to 3500 m altitude. 
Hence on the basis of observation, we conclude that 
an intermittent normobaric hypoxia (IHE) exposure 
consisting of 12 per cent FIO2 (altitude – equivalent 
4350 m) for four hours per day for four consecutive 
days significantly reduces the incidence of AMS upon 
acute exposure to 3500 m altitude.
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