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NOMENCLATURE
AR   Antibiotic resistance
ITMC   Isothermal microcalorimetry
AFM   Atomic force microscopy
AST   Antibiotic susceptibility testing
POC   Point of care
SPR   Surface plasmon resonance
LAMP   Loop-mediated isothermal 
	 	 	 amplification
SAW   Surface acoustic waves
NMR   Nuclear magnetic resonance
LC-ESI   Liquid chromatography - electrospray 
   ionisation tandem mass spectrometry
MALDI-TOF MS  Matrix-assisted laser desorption 
	 	 	 ionisation–time	of	flight	mass	
   spectrometry
SERS   Surface-enhanced raman scattering
TOF-SIMS		 	 Time-of-flight	secondary	ion	mass	
   spectrometry
DiBAC4   bis-(1,3-dibutylbarbituric acid)  
   trimethine oxonol
RST   Respirometric screening 
   technology
DEP   Dielectrophoresis
RI    Refractive index

1.  INTROdUCTION
Antibiotics are natural, synthetic or semi-synthetic 

substances used to treat patients suffering from multiple 
microbial infections to reduce the pace of associated 

mortality and morbidity. The golden era of antimicrobial 
therapy started with the introduction of the β-lactam	antibiotics 
for the treatment in 1940s. Among various countries, India is 
at the top in antibiotic consumption followed by China and 
USA1. However, during recent years antibiotic resistance is 
increasing which is a very complex and challenging problem in 
various sectors like medical healthcare centres, hospitals and 
in communities as it increases the number of patients and adds 
a	significant	increase in cost associated with treatment2-3. There 
is a need for regular antibiotic stewardship as effectiveness 
of antibiotics is continuously decreasing in contrast to the 
increasing infectivity of pathogens. The causes of resistance 
development are multifactorial some of which are highlighted 
in Fig.1. 

Figure 1. Major causes of resistance development in bacterial strains.
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AbSTRACT

The rise of antibiotic resistance is an emerging problem of the millennium. Clinical microbiology plays an 
important role in combating the problem by facilitating diagnostics and therapeutics thus managing infection in 
patients. Diagnostic failures are a major limiting factor during bacterial infection that causes inappropriate use of 
antibiotics, delay in start up of treatment and decrease in the survival rate during septic conditions. Thus rapid 
and reliable detection is highly relevant during such bacterial infections and also at the time of disease outbreak 
as many such pathogens can be used as biothreat agents or bioweapons affecting human health and posing risk to 
national security. The importance of various methods for fast pathogen detection and antimicrobial susceptibility 
determination is highlighted. These methods have the potential to provide very precise and rapid ways for bacterial 
screening and identifying the correct antibiotics to cure infection.
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Among the conventional methods for antimicrobial 
susceptibility testing most commonly used include disc 
diffusion and broth microdilution which are used as reference 
methods4. Other conventional methods include E-test, 
biochemical assays and microscopy5-6. Although conventional 
methods are inexpensive, they lack rapidity for effective 
clinical use, selectivity for fastidious and non-fastidious 
microrganisms, time and requirement of trained diagnostician 
to perform the test. Early stage diagnosis followed by effective 
antibiotic treatment has the potential to decrease the emergence 
of antibiotic resistance and provide a means for judicious use of 
antibiotics. Thus the review summarises the recent advances 
in	the	pathogen	identification	and	antimicrobial	susceptibility	
testing methods which are developed to decrease the time 
duration,	increase	sensitivity	and	specificity	with	the	potential	
to be used in point of care settings. These methods may provide 
possible alternatives to the existing conventional methods in 
near future and proves to be an important aspect of measures 
to control infectious diseases7. Rapid diagnosis is also very 
important in the context of a biological warfare8. Such a need 
also arises in ICUs and hospitals where a direct relationship 
has been demonstrated between antibiotic consumption and 
emergence of multidrug resistance in patients infected with 
non-infectious agents9. Inappropriate initial antibiotics for 
pneumonia infection are usually linked to extended intensive 
care unit stay and are associated with an increased risk of 
mortality10. This emphasise the relevance of rapid diagnostic 
platforms	that	offers	fast	result	with	high	sensitivity,	specificity	
and low cost. Table 1 highlights the underlying principle of 
various methods described in the manuscript.

2  RApId dETECTION METhOdS
2.1  Isothermal Microcalorimetry

Isothermal	 Microcalorimetry	 (IMC)	 is	 a	 non-specific,	
label-free analytical technique that measures heat in microwatt 
or lower range11. The technique can be used to detect persistence 
of infections and AST by monitoring thermodynamic and 
kinetic properties of the biological system within viable 
cells. Heat is generated as a by-product of various biological 
processes. It can also be used for determination of drug 
susceptibility and MICs of against various gram negative, gram 
positive and Mycobacterium sp.12-13. Certain advantages of this 
technique	includes	its	higher	senstivity,	efficiency,	rapidness,	
versatility and compatibility with solid and liquid media. The 
method requires a standard multichannel microcalorimetry 
instrument. 

2.2  Real-time Microscopy
This method is based upon morphological phenotyping 

that requires commercial high-resolution camera-based 
systems. An optical high throughput POC instrument called 
ocelloscope that relies on time-lapse microscopy is in use for 
AST in 3 hour duration14. Fluorescence microscopy can also be 
used for susceptibility testing based upon cellular changes on 
antibiotic exposure using dyes like DAPI, SyTOX Green and 
WGA-647. The results can be observed within 2 hr providing 
a	 rapid,	 robust,	accurate	and	flexible	method	of	evaluation15. 
Baltekina16, et al. have developed a 30 min POC test that monitors 

Table 1.  different techniques for detection of microbes and 
principle involved

Technique basic principle

ITMC Changes	in	heat	profile	of	live	and	dead	
bacteria due to various metabolic activities

Real-Time 
Microscopy

Observes morphological changes in bacteria 
on antibiotic exposure

PCR Amplification	of	resistance	factors/gene	

AFM 
Cantilevers 

Changes in pattern of vibrations of cantilevers 
due to presence of viable cells 

Spectroscopic 
detection 

Monitors	the	intensity	of	specific	biomarkers	
or observes changes in spectral properties

Electrochemical 
detection

Change in electrical properties of culture 
media like impedence, conductance, 
capacitance

Luminescence 
based detection

Changes	in	fluorescence/luminescence	
intensity of certain dyes in medium containing 
viable cells

Flow cytometric 
detection 

Changes in scattering of light due to changes 
in cell interior under various conditions 

Respirometric 
detection

Monitoring of cellular respiration by O2 
consumption or monitoring O2 concentration 
in media 

DEP Changes in dielectrophoretic force between 
live and dead cells

SPR
Changes in RI due to changes in of 
biochemical charecteristics of bacteria 
subjected to antibiotics

LAMP
Amplification	of	resistance	factors	but	
difference lies in primers and it eliminates the 
need for costly PCR machines

SAW
Change in pattern of propagating acoustic 
waves in presence of bacteria in culture 
environment 

growth rate of bacterial cells captured from urine samples using 
custom-designed	microfluidic	chip.	McLaughlin17, et al. have 
performed rapid susceptibility testing in B. anthracis using 
time-lapse microscopic observation of growth and morphology 
in presence of antibiotics. Kalashnikov18, et al. have monitored 
cell	death	under	 the	 influence	of	antibiotics	using	automated	
microscopy. Choi19, et al. have used microscopic detection 
for	 early	 estimation	 of	 antibiotic	 susceptibility	 profile	 of	
positive blood cultures by mixing them directly with agarose 
and spreading on a plastic microchip containing lyophilised 
antibiotics. 

2.3  pCR based detection
PCR	 based	 techniques	 rely	 on	 amplification	 of	 known	

resistance	 genes	 i.e.	 resistance	 profiling	 against	 tetracycline	
resistance genes offers an advantage in disease control and 
management as it is an effective antibiotic against pathogenic 
microbes including number of potential biowarfare agents8. 
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This method has also been used to detect presence of 
various foodborne pathogens on the basis of toxin secreting 
gene20. Strategies based on PCR are promising, highly sensitive, 
fast,	 specific	 and	 offers	 an	 advantage	 for	 slow	 growing	 and	
unculturable bacteria21-22. However the major drawback lies in 
its inability to discriminate between viable and dead cells. This 
drawback was removed by the use of DNA intercalators that 
prevents	amplification	of	DNA	from	non-viable	cell	and	free	
cellular DNA i.e. propidium monoazide (PMA) and ethidium 
monoazide (EMA) that selectively enters damaged cells and 
blocks	 the	DNA	for	PCR	amplification	via	photoactivation23-

24. Real-time PCR (RT-PCR) is also widely used for detection 
of various microorganisms in clinical and environmental 
samples. Recently a procedure based on RT-PCR, monitors 
highly conserved 16s rRNA gene to determine pathogenic 
load in blood samples indicating susceptibility against various 
antimicrobial drugs25.

2.4  Cantilever based detection
Cantilevers are mainly used in AFM that contains a very 

sharp tip to scan the surface of the sample and an attractive 
force is excerted between the tip and the surface that causes 
deflections	in	the	cantilever	that	are	detected	using	a	LASER	
beam. Surface imaging via AFM does not require staining, 
fixation	 or	 cell	 labelling26. Change in the weight of the 
bacterial cells after antibiotic exposure causes vibrational 
changes in cantilevers. Apart from predicting about the 
success of antimicrobial it also indicates its MIC within less 
time and at lower cell concentrations (less than even 105 
cells). The	 technology	 has	 also	 been	 used	 in	 microfluidics	
for	 highthroughput	 susceptibility	 profiling	 and	 detection	
of bacterial pathogens like Listeria monocytogenes using 
receptor functionalised microchannels embedded in bimaterial 
microcantilever27-28. 

2.5  Spectroscopy based detection 
Various spectroscopic techniques include NMR, IR 

spectroscopy, LC-ESI MS, SERS, MALDI-TOF MS and TOF-
SIMS. In a recent study, a handheld SERS based system have 
been used for bacterial detection and identification29. The 
decrease	 in	 intensity	of	 specific	biomarkers	 in	SERS	spectra	
after 2 hr of antibiotic exposure leading to rapid susceptibility 
and MIC determination30.	 SERS	 profile	 are	 very	 sensitive	
and	 stable	 and	 have	 been	 used	 for	 detection,	 classification,	
quantification,	 discrimination	 of	 different	 strains	 including	
various biothreat agents31. 

2.6  Electrochemical detection 
Monitoring electrochemical parameters like impedence, 

capacitance and conductance of cells in growth medium are 
used for susceptibility testing against antibiotics. Bacterial 
entrapment	influences	the	electrical	properties	of	electrode	thus	
changes in such properties indicates presence of pathogens32. 
Webster33, et al. evaluated the susceptibility of antibiotics 
on Pseudomonas aeruginosa	 biofilms	 by	 electrochemical	
monitoring an electroactive pyocyanin, a virulence factor. 
Electrochemical techniques like cyclic voltammetry34 and 
differential pulse Voltammetry are used for selection of 

antibiotics against pathogens35 and are highly compatible with 
microfluidics	and	integrated	circuit	technology.	

2.7 Fluorescence and Luminescence based detection
Fluorescence based detection relies upon the use of 

fluorescent	 labels,	 dyes	 or	 probes	 whose	 emission	 spectra	
are detected using fluorescence	 spectrophotometer. ATP 
based bioluminescence is an important indicator of bacterial 
populations which is also used as an indicator of bacterial 
contamination in health care centres36. Hunter and Lim37 used 
the method for development of an immunoassay using pathogen 
specific	 antibodies	 to	 capture	 target	 bacterial	 cells	 from	 a	
sample matrix followed by incubation with reagent (Bactitre 
glo) that converts cellular ATP into an output luminescent 
signal with a limit of detection of 104 cfu/ml for S typhimurium 
and E coli O157:H7.

 
2.8  Flow Cytometry based detection 

Flow Cytometry (FC) is being used in microbiology since 
the	late	1970s	and	was	firstly	used	to	determine	bacterial	DNA	
and protein38. Cohen39, et al also detected pathogen in clinical 
samples within 2 hr and tested the effect of amikacin on positive 
samples in 1 hr. DiBAC4	was	also	used	as	a	fluorescence	probe	
for evaluating the effects of antibiotics on E coli by visualising 
changes in membrane potential40. Several other dyes used for FC 
based detection include SyTO-9, SyTO-X green I, SyTO 16, 
SyBR green I and Acridine Orange41. However the technique 
only assess cellular damage on antibiotic exposure and can’t 
distinguish between static or cidal effect of antibiotics. 

2.9 Respirometry Screening Technology
RST allows high-throughput analysis of consumption 

of oxygen by viable cells, tissues, isolated mitochondria, 
organisms and enzymes, and is therefore a very convenient 
and highly valued technique with promising future potential42. 
Level of oxygen is an indicator of presence of viable bacteria. 
Sensors based on monitoring changes in molecular O2 level 
have	been	used	to	confirm	the	presence	of	live	cells43-44.

2.10 dielectrophoresis
Dielectrophoresis (DEP) is the translational movement of 

a	cell	in	a	non-uniform	electric	field	due	to	it’s	interaction	with	
the	 electric	 field	 gradient.	 Here	 manipulation	 of	 cells	 occur	
at microscale levels45. DEP has also been used for nucleic 
acids, proteins and other biomolecules apart from bacteria, 
spores, yeast, viruses and other eukaryotic cells. Exposure to 
antibiotics at their MIC value causes a change in morphology 
and	 frequency	of	migration	of	 the	cells	causing	a	significant	
elongation of the gram negative rod shaped microbe46. These 
changes are observed by their dielectrophoretic behavior. At 
a	definite	alternating	current	 frequency,	bacteria	which	 resist	
the antibiotic exposure does not migrate and get arranged 
at the center due to negative force while elongated once get 
adsorbed at the edges due to positive dielectrophoretic force. 
The phenomenon is more commonly used as a strategy for 
seperation of microbes from non-biological samples and 
concentrating the bacteria present in clinical and industrial 
samples thus decreasing the time required for screening47. 
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Table 2. biosensor strategies used in pathogen detection and susceptibility testing

biosensor type bacterial strain Functional role Range of detection Ref.

ATP-bioluminescence 

Antibodies	immobilised	onto	fiberglass	
membrane sandwiched between 
polypropylene components used to capture 
uropathogenic micro-organisms

Pathogen	identification	
and susceptibility 
testing

1 × 103 to 1 × 105 cfu 
/ml 58

Phase-Shift Spectroscopy E. coli Susceptibility testing 103 cfu/ml in 2–3 hr 59

Colorimetric immunoassay Vibrio parahaemolyticus Pathogen detection 1 10 to 105 cfu/ml 60

Positive Dielectrophoresis 
focusing

Escherichia coli in drinking water based on 
impedance measurement Pathogen detection 300 cfu/ml 61

Optical biosensor
E. coli and E. carotovora, biorecognition 
monitored by ATR-FTIR and confocal 
microscopy

Pathogen detection 103-104 cfu /ml 62

Amperometric biosensor

Efficacy	of	different	antibiotics	on	E.	coli,	
S. aureus and S. choleraesuis
Based on electrochemical monitoring of 
glucose consumption 

Detection	identification	
and susceptibility 
testing

6.5x6 102 or 6.5 cfu/ml 
3 or 7 hr 63

Electrochemical biosensor Electrochemical detection of 16S rRNA of 
pathogens in Clinical Samples

Pathogen detection, 
identification	and
susceptibility testing

5x105 to 1x109 cfu/ml 
(3.5 hr) 64

Electrokinetics enhanced 
electrochemical biosensing E. coli in clinical isolates in blood Pathogen detection and 

susceptibility testing - 65

Acoustic biosensor
Detection of 3 most important plant 
pathogens using QCM multiplexed with 
PCR

Pathogen detection 102−103 cfu/ml 66

Impedance biosensor

 Detection based upon electroactive 
metabolite, pyocyanin secreted from - 
Pseudomonas aeruginosa that alters the 
impedance of growth media 

Pseudomonas 
aeruginosa detection 106 cfu/ml in 24 hr 67

Dual Response 
(Impedimetric/LAMP) 
Biosensors

LAMP	amplifies	the	Tuf gene in E. 
coli after lysis of E. coli cells bound 
to bacteriophage used as bioreceptor, 
followed by detection using linear sweep 
voltammetry

Quantification,	
screening,identification	
and viability detection 
of Escherichia coli 

8 × 102 cfu/ml to 102 
cfu/ml (within 1hr) 68

SAW based sensor
Uses SH-SAW, fabricated using the 
complementary metaloxide-semiconductor 
(CMOS) method

Pathogen sensing - 69

Optical photodiode array 
(PDA) based biosensor

E. coli O157:H7 using an integrated circuit 
of PDA Pathogen detection - 70

Electrical biosensor E. coli and MRSA, pathogen captured on 
plastic microchips with printed electrodes Susceptibility testing 106 cfu/ml 71

2.11 Surface plasmon Resonance 
SPR is an advanced optical, label-free, ultra-senstive 

method for AST based upon light scattering phenomenon. The 
technique requires relatively small amount of sample. Gold 
(Au)	thin	film	coated	chemically	with	poly-L-lysine	commonly	

used	 to	 trap	 bacteria	 after	 its	 purification	 from	 mixed	 cell	
population. Change in the pattern of resonance of the surface 
plasmons is revealed on the detector through changes in the 
angle of resonance. Thus SPR shows the difference between 
resistant and senstive strain48. Nguyen49, et. al. detected changes 
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in RI of tested bacteria subject to antibiotics in real time. 

2.12 Loop-Mediated Isothermal Amplification
LAMP	is	a	highly	simple,	specific,	sensitive,	rapid,	reliable	

and	affordable	DNA	amplification	assay	for	detection	of	drug	
resistance	and	microbial	identification	introduced	by	Notomi50. 
This	assay	requires	4	to	6	primer	designed	using	LAMP	specific	
primer	designing	 software	and	having	 specificity	 for	distinct	
target region to form a loop structure that undergo autocycling 
rather than thermal cycling for strand displacement followed 
by	nucleic	acid	amplification	at	isothermal	conditions	of	60	°C	
-	65	°C.	The	amplification	process	requires	a	water	bath	instead	
of a costly device. The reaction product need not be resolved 
on agarose gel electrophoresis as in conventional 
PCR, instead product can be visualised by turbidity 
measurement,	 flourescence	 of	 reaction	 mixture	
or directly in form of precipitate. The quantity of 
product formed is relatively larger51-52.

2.13 Surface Acoustic Waves 
SAWs are basically sound waves, a 

longitudinal mechanical wave travelling parallel to 
the surface of a material exhibiting elasticity53. Its 
application include all areas of sensing including 
thermal, optical, pressure, torque, acceleration 
and also for detection of pathogens. It requires a 
piezoelectric substrate and interdigital transducers 
(IDTs). IDTs affect the propagation of waves 
mainly due to dispersion from live bacterial cells, 
mass load, osmotic pressure, conductivity changes 
of the medium, etc54. 

3.  ROLE OF bIOSENSORS IN EARLy 
dETECTION ANd ANTIbIOTIC 
SUSCEpTIbILITy ESTIMATION
Biosensors are analytical tools for converting a 

biorecognition event into a detectable signal55. They can be 
used to reduce limit of detection and to increase senstivity 
by employing various micro and nanoscale technologies. 
The	technology	offers	a	more	specific,	label	free,	rapid,	real-
time, portable and cost-effective strategy apart from the ease 
of miniaturisation to form robust and portable POC devices56. 
Apart	from	their	diverse	role	in	medical	field	they	have	shown	
their potential at the times of outbreaks for detection of various 
infectious diseases (virus, bacteria, parasite) thus globally 
preventing issues related to bioterrorism57. Most of the methods 
discussed like SAW, SPR, cantilever, LAMP, electrical and 
electrochemical sensing can be used for biosensor development 
to detect pathogens in food, water and clinical samples. Table 
2 highlights some biosensing based strategies for pathogen 
detection and susceptibility testing.

4.  CONCLUSIONS
Bacterial septicemia is a life-threatening condition that 

requires immediate antibiotics prescription. Although culture 
based techniques are the gold standards for pathogen detection 
and ASTs, they offers some limitations especially in terms of 
time duration due to long culture steps. Thus the advances in 

technologies for the rapid detection and AST of pathogens 
can be used as a measure to reduce the havoc caused due to 
increasing antibiotic resistance (summarised as in Fig. 2). 
These	 offer	 potential	 for	 specific,	 more	 reliable,	 real-time,	
cost effective, point of care, high-throughput ASTs. Most of 
the methods discussed are based upon metabolic activities or 
biorecognition events hence are rapid and can be miniaturised 
to point of care device for medical use in hospitals and remote 
areas. The techniques alone or in conjugation with other 
technologies	can	be	used	for	highthroughput	quantification	and	
detection of pathogenic bacteria directly from samples.

Figure 2. Methodologies for the rapid detection and AST of pathogens.
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