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1.  INTRODUCTION
Breast cancer (BC) identification and diagnosis has for 

all time been a foremost concern for the pathologists and even 
for medical practitioners. 32 per cent of Indian inhabitants get 
cancer at some time in their life1. For Precise detection of BC, 
experts and medical practitioners prefer microscopic biopsy 
images collected under the microscope. In histopathology, 
BC biopsy images will be characterised into cancerous one 
or normal one2,3. Highly (40 x/100 x) magnified biopsy image 
provides consistent information about abnormal and normal 
tissues. Later the segmentation and categorisation application 
can be continued with other defence and military applications 
where we considered IRS satellite images for segmentation of 
required areas.

Plissiti4, et al. proposed color gradient watershed transform 
using 90 pap-stained cervical images of resolution 1536 × 2048 
pixels and obtained 6 shape, 8 texture and 3 intensity features. 
They utilised maximum-relevance with minimum-redundancy 
(MR-MR) criterion for feature selection. They handled cell level 
diagnosis using image Processing methodologies. Bergmeir6, 
et al. presented a model for obtaining the local histograms 
and GLCM texture features. Huang and Lai7 explained a 

methodology for segmentation and categorisation methods for 
histology images basing on texture features and with help of 
SVM the highest Categorisation accuracy obtained is 92.8 per 
cent. 

Adem Kalinli8, et al. considered otsu thresholding 
approach with the classifiers namely k-nearest neighbours, 
radial basis neural networks, support vector machines and 
k-means clustering, naive bayes and functional trees for object 
extraction followed by classification. Kasmin10, et al. obtained 
the features of BC tissue images possessing area, perimeter, 
solidity, convex area, orientation filled area, major axis length, 
ratio of cell and nucleus area, eccentricity, mean intensity of 
cytoplasm, and circularity. The efficacy of other classifiers such 
as SVM, random forest, and fuzzy k-means is also examined. 
Proposed work uses Ductal Carcinoma (DC) BC images, as > 
80 per cent of BC is because of ducts. Also 40 X magnified 
Hematoxylin & Eosin (HE) DC images were chosen for clear 
cell segmentation.

Ali5, et al. considered Active contour models using 
multiple level sets for segmentation of 14 BC histology images 
with resolution 512 × 512 pixels and generated shape features 
to obtain an accuracy more than 90 per cent. Fatakdawala9, et 
al. proposed expectation maximisation driven geodesic active 
contour (EMaGAC) without and with overlap resolution using 
100 breast histology images with resolution of 200 × 200 
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pixels and generated texture features to attain sensitivity of 86 
per cent, Positive-Predicted Value of 64 per cent and overlap 
resolution of 90 per cent . 

Kanchanamani16, et al. discussed the various classifiers 
namely Support Vector Machine (SVM), naive bayes, k-nearest 
neighbour, multi-layer perceptron, and linear discriminant 
analysis and obtained best classification Sensitivity, Specificity 
and Accuracy values for SVM as 89.2 per cent, 96.4 per cent, 
and 92.5 per cent. Mouelhi13, et al., defined modified geometric 
active contour model and touching nuclei method for nuclei 
detection. In the paper, they extracted colour and shape features 
and obtained segmentation accuracy of 97 per cent. 

George11, et al. defined marker-controlled watersheds 
transform using 92 breast cytological images of 640×480 pixels 
and extracted 12 statistical, 10 textural and 2 intensity features 
to evaluate classifier sensitivity and specificity as 95.49 per 
cent and 83.16 per cent, respectively. 

Till now, less research is engaged on segmentation of 
noise corrupted, less contrast BC histopathological microscopic 
biopsy images. Those images lead to poor and erroneous 
segmentation of local image intensity non-homogeneities, 
and ultimately failing to extract true edges. Without the 
optimal segmentation, the processed result cannot be further 
utilised and preferred for classification. This paper proposes 
two new segmentation methodologies for attaining optimum 
segmentation with highest accuracy. 

2.  METHODOLOGY
Automatic detection, classification of BC biopsy images 

from microscope is quite challenging as the images retain 
clusters and overlapping cells. Distinctive stages involved in 
methodology include the tissue image enhancement using 
non-subsampled contourlet (NSC) transform for detection of 

edge levels are presented. Proposed methodology is presented 
in Fig.1. The details of stages utilised in methodology are 
discussed as follows.

2.1  Image enhancement
Preprocessing necessity is to reduce noise, improve 

processing speed, for contrast (quality) improvement of area 
of interest. Biopsy images gathered from light microscope 
may lack in some respect like uneven staining and poor 
contrast, so enhancement improves the contrast between the 
foreground (area of interest) and background. Circular Hough 
(CH) transform described by Hrebien23, et al. is preferred for 
detection of edges its result is presented in Fig.3(b). For image 
enhancement initially contrast-limited adaptive histogram 
(CLAH) equalisation21 is used. CLAH equalised output is 
presented in Fig. 3(c).

Figure 1. Distinctive stages involved in methodology.
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Figure 2. NSC transform filter bank structure.
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Figure 3.  (a) BC biopsy image, (b) CH cell detected output, (c) 

CLAH enhanced image, and (d) edge detected image 
using NSC transform.
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2.1.1 Non Subsampled Contourlet Transform
Wavelets became efficient alternative to Fourier 

methodologies in microscopic image applications because 
of differing window size (wide for slow and narrow for 
high frequencies i.e., optimised time, frequency resolution). 
Resultants are ¼ th size of original tissue. Smoothed image can 
further decompose into sublevels for further iterations. Wavelet 
transform being 1-D, smoothness of curves in tissue image is 
limited to 1-D, which leads to implementation of contourlets 
(a 2-D transform). Contour let is non-shift invariant because 
it utilises up and down samplings in Directional Filter Bank  
(DFB) and Laplacian Pyramid (LP) construction. It leads 
to NSC transform implementation12. Its filter bank structure 
presented in Fig. 2.

Contrast with contour let, NSC transform possesses (a) 
non-subsampled LP obtained by non-subsampled 2-channel 
2-D filter banks and (b) non-subsampled DFB obtained by 
switching of down/up samplers in 2-channel DFB structure 
while filter up sampling accordingly. Non-subsampled LP 
(NSLP) preserves multiscale feature and Non-Subsampled DFB 
(NSDFB) possess directionality. Let the edge outcomes attained 
by NSC transform using NSLP and NSDFB be e(p, q). The 
outcomes are better than the DWT based method as presented 
in Fig. 3(d). NSC decomposes BC image into approximation 
sub-band (that preserves the content of input image) and detail 
sub-bands (that stores intensity changes in all directions). The 
energy detail coefficients from all decomposed detail sub-band 
levels is formulated as follows.
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And/or its standard deviation (SD) from NSC decomposed 
BC tissue image on every directional sub-band is formulated as    
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Where Lµ is the mean of Lth sub-band defined as 
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where p, q are the available total rows, columns of 
decomposed tissue image respectively, WL is the Lth coefficient 
of the NSC decomposed sub-band, and LxL is the NSC 
decomposed sub-band. It results with energy and SD feature 

vectors as fje=[E1,E2,…En] and/or 1 2, ,...j nf σ = σ σ σ    
respectively, where ‘n’ defines the number of obtained 
directional sub-bands. Pixel energy defines its information 
regarding the intensity variation. NSC energies of every 
pixel in BC image are evaluated (considering all direction 
average values) to construct the energy map, which gives the 
distinguished energy variations contained in it.

2.2  Cell Segmentation
2.2.1 K-Means Partitioning

Pre-processing is required for separation of nuclei from 

its false positives. K-means22 clustering is used for splitting 
the nuclei from false positives i.e. to divide N observations 
(i1,i2,i3…in) of image I into K areas (K ≤ N), (A1,A2,A3…An) for 
all Ai, and mean mi as

   2

1
arg min[ ]

j

K
j

Ij A
KM I m

= ∫
= −∑ ∑││ ││                                    (3)

The resultant of k-means is as presented in Fig. 4(b).

2.2.2 Proposed Model I (PM-I)
Reliable unsupervised Watersheds concept in image 

processing depends on assumption of an image I as topographic 
3-D space, with intensity (elevation information) versus two 
spatial coordinates. To get watershed lines of I with local 
minima Li = (L1, L2,L3…LM, i=1,…M ) flooding process is 
initiated from nmin = Imin + 1 to nmax = 1max + 1, where Imin, Imax are 
the respective lower, higher image intensity values and cb(Li) 
be the points within catchment basin due to local minimum Li. 
During flooding process, the union of catchment basins at nth 

stage, cb(n), can be related as cb(Imin + 1) = T(Imin + 1), Where 

( ) ( ){ }T n x  I x n= Ι < is the image points set with intensity less 
than n and its set of connected intensity components be R. For 
each component connected r ϵ R, the intersection k with cb(n-1) 

is evaluated as ( )1bk r c n= ∩ − . Further cb(n) set is derived 
sequentially using cb(n-1) based on possibilities of k as:

If • k is vacant or if k possess one component of ( )1bc n − , 
then k belongs to an existing basin of local minimum i.e. 
new minimum component r is added to ( )1bc n − , then
  ( ) ( )1 .b bC n C n U  r= −                                         (4) 

If • k possess higher than one component of cb(n-1), then r 
belongs partially to distinct basins and the level in these 
basins will unite. Then watershed line is built to eradicate 
the overflow between distinct basins. 
Application of traditional watershed using image 

gradient produces over segmentation The image gradient 
g(p, q) is obtained using gray scale dilation and erosion, with 
structuring element (SE) s. So, Marker Controlled Watershed 
(MCW) method is introduced. Xiaopeng14, et al. discussed 
that due to low SE size, opening, and closing morphology 
will detach bright, dark details and large SE eradicate large 
contours. So in PM-I altering SE size is constructed for every 
pixel in the tissue image I(p, q) which is defined as Adaptive 
Marker Controlled Watershed (AMCW) method. Initially SE 
map, Ms(p, q) is evaluated using the weighted variance, and 
weighting coefficient discussed by Rajyalakshmi20, et al. Then 
all pels in I(p, q) are altered using Ms(p, q) with opening ( ) and 
closing (•) operations as  

   M1(p,q) = [g(p,q) ° Ms(p,q)] •Ms(p,q)                          (5)

In this PM-I, the edge details attained by NSC transform 
e(p,q) are combined with M1(p,q) using fusion technique and 
the observed results are as depicted in Fig.4(c).
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and accurate. So, we considered circular neighborhood oq each 

point q ∈ Ω with a radius p defined as :qO p p q− ≤ ρ
. The 

partition of the entire spatial domain Ω leads to a partition 

{ } 1

N
q j j

o
=

∩ Ω . The values ( )b p p∀
  in oq are close to ( )b q

 , for 
slow varying b . Therefore, 

      ( ) ( ) ( ) jj qI p q c p for p Ob≈ + η ∫ ∩ Ω
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                         (6)

So, the intensities ( ):j
jq qI I p x O

  = ∫ ∩ Ω 
  



 form a  
 
cluster set with centre or cluster mean ( ) , 1, 2...j jm q c jb  N≈ =
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. Considering above equation (3) and (6), using oq for the 
intensities I(p) and window function (which is non- negative) 
FG(q-p), local clustering criteria 

qå  can be written as, 
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j q
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jq G
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Where, uq (p) is the membership function, uq (p)=1, for 

jpεΩ else zero. Where FG(q-p) is a truncated Gaussian function, 

which is stated as ( )2 2/2
( ) 1/

V
GF v a e

− σ 
=  

  

 for  v p≤ , the radius 
of neighborhood. 

 Integration of NSC edge details with LCIF • 
NSC edge detected results are combined with MLS 

results, to obtain nuclei boundaries which removes complete 
intensity in homogeneities presented in Fig. 4(d). NSC solves 
the problem of coarser details and also it achieves all fine details 
of the image. So, for cell extraction in H & E images the NSC 

edge details ( )e p,q obtained from equation (1) is integrated 
with LCIF to overcome local in homogeneities problem. And 
the initial front for MLS is provided by NSC transform. Energy 
formulated by integrating e(p,q) with MLS-LCIF is

( ) ( ) ( ) ( )2

1
,

j q

NN
jq h

j
G

O

F q p e p q q c u p dpb
Ω ∩=

ε = − −∑ ∫


 

│ │            (8)

The above equation (8), defines the integrated LCIF due to 
the response attained from NSC transform. Now the integrated 
LCIF is applied for the whole image to extract global function. 

Where, uq(p) is the membership function, uq(p)=1, for p jεΩ

else zero. ( ) 0,G qF q p for p O− = ∉ . 
Formulation of Global Clustering Image-Function • 
(GCIF)
A real image on domain Ω, chooses N distinct constants 

1 2, Nc c c…
  

 to split to disjoint N regions 1 2, ,..., NΩ Ω Ω   and 

( )F
jM φ , as membership function, that relies on number of LS 

functions initiated. For energy minimisation, it is formulated 

by representing the regions 1 2, , , NΩ Ω … Ω
  

 with LS functions. 

(a) (b)

(c) (d)
Figure 4.  (a) BC biopsy image, (b) K-means result, (c) PM-I 

integrated result, (d) PM-II integrated result.

2.2.3 Proposed Model II (PM-II)
In this PM-II the edge extractions e(p,q) of NSC transform 

are utilised as markers for Multiphase Level Sets (MLS) energy 
function shown in following equations to eliminate the local 
inhomogeneities19. NSC provides a combined result of NSLP 
and NSDFB. With window function and cluster mean, F(h-x) 

(non-negative and is 0, for Sx M∉  and ( )j jh cbm ≈
  

respectively, 
local clustering ɛh criteria is attained as, 

Image Model Formulation• 
H and E stained images captured from the camera (via 

microscope) are affected with intensity in homogeneities, so an 

observed image model I can be perceived as I Rb= + η
 

. Where 
R be the real image on a spatial domain Ω, takes approximately 

N distinct constants c1,c2…cN (with 
1

N
jjc c==

 



) partitioned 

into N disjoint regions Ω1,Ω2,…,ΩN with 1
N
j j=Ω = ∪ Ω  and 

0i j j kΩ ∩ Ω = ∀ ≠  . The component b  is defined as shading 

image (bias field). The tilde of R


 and b  is to distinguish from 
its estimates R and b respectively. 
• 

Formulation of Local Clustering Image-Function• 
As square neighborhood possesses unequal distance 

between corner or adjacent cells to analysis cell, it introduces 
directional bias that results in inaccurate segmentation. Also 
for high-resolution images i.e. as neighborhood to cell size 
ratio increases, circular neighborhood result is more efficient 



71

RAJyALAKSHMI, et al.: DEF. LIFE SCI. J., VOL. 4, NO. 1, JANUARy 2019, DOI : 10.14429/dlsj.4.11683

For N=2, let φ  be the LS function used to represent Ω

as 1 pΩ =

 for ( ) 0pφ > , and Ω2 = p, for ( ) 0pφ < . To reduce 

qε  in qΩ∀ , qε  integral must be minimised with respect 
to q over the image domain Ω . In PM-II formulation, total 

energy ε  using dependent parameters , ,b c
 

Φ  
 

   is obtained as,     
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( ) ( )1( ),... ( )F F
j j fqM qMφ = φ φ

( )F
jM Φ is the membership function described as 

( ) ( )1
F FM HΦ = Φ  and ( ) ( )2 1F FM HΦ = − Φ with Heaviside 

smoothed function, ( ) ( )1 21 arctan
2

FH  Φ = + φ π 
. For N>2,  

two or more LS functions are used to represent N disjoint 

regions 1 2, , , NΩ Ω … Ω
  

. When N=3, two LS functions 1φ

and 2φ are defined using ( ) ( ) ( )1 1, 2 1 2
F F FM H Hφ φ = φ φ

, ( ) ( ) ( )2 1, 2 1 2(1 )F F FM H Hφ φ = φ − φ , and 

( ) ( ) ( )23 1 21, (1 )F F FM H Hφ φ = − φ φ . Let LS functions be 

represented by a vector function 1 2( , ), fΦ = φ φ …φ .
The energy functional EF,

( , , ) , , ( )FE cÚ b c R
 

Φ = ε Φ + Φ  
 

                                           (11)

Where energy regularisation term ( )R Φ , defined as 

( ) ( )
1

f
k

k
R R

=
Φ = φ∑ , for LS function 1 2( , ), fΦ = φ φ …φ . Considering 

regularisation ( ) ( )R pΦ = ∫ ∇φ│ │ term into account, the term 

( , , )F bE cΦ
 

 in equation (11) can be minimised using the principle 
discussed in Rajyalakshmi24, et al. The integrated response of 
NSC edge details with MLS extracts clearly the nuclei shown 
in Fig. 4(d). Performance evaluations for traditional K-means, 
AMCW, MLS, PM-I, PM-II were presented in Table.1.

2.3  Feature Extraction
Mouelhi13, et al. extracted Haralick’s, oriented gradients 

histogram, 4 colour based moment features to categorise 
cancerous One over BC biopsy images. A number of 

Table 1. Segmentation approaches performance evaluation

Segmentation 
algorithm

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%)

K-means22 76.534 71.33 76.59
MCW14 82.678 88.63 81.92
MLS19 87.689 91.79 93.89
PM-I 93.741 96.27 95.79
PM-II 98.741 97.27 98.79

comprehensive discussions were reviewed in the survey7,10,15,17 
for segmentation and classification. Tables 2 (a) and 2 (b) show 
the features extracted in the proposed model.

These features set act as input for categorisation using 
supervised classifiers.

2.4 Supervised Classification using Features Set
Using the segmented features attained from PM-II, the 

testing data set is classified using K-nearest neighbour (KNN) 
classifier studied in Altman17 and multi-class support vector 
machine (MC-SVM) classifiers studied in Hsu18, et al. The 
entire classification is done using the shape, intensity and texture 
features elevated from 96 trained images. The response of the 
ROC plot for KNN and M-SVM are compared and proved that 
M-SVM provides better classifier accuracy over KNN.

2.4.1 KNN Classifier
KNN classifies images based on closest trained samples 

in feature space. Classification also relies on highest vote 
of neighboring points. Problem occurs while selecting the 
neighbors, which are closest to each sample. Shortest distance 
is chosen for classifying BC tissue images. Euclidean distance 
in-between pixel (p1, q1) and pixel (p2, q2) is

 ( ) ( ) ( )2 2
1 2 1 2,D x y p p q q= − + −                       (12)

2.4.2 MC-SVM Classifier
Let fj be feature set, w be vector splitting hyperplane, then 

objective optimised function to be minimised for MC-SVM is:

2'

1

1min[ ]
2 j

p
N

F jO w C
=

 
 = + ζ
 
 

∑││                        (13)

Where C is the user defined parameter, and 

( )0 1 .j j j jy f w b y≤ ζ ≤ − +  label of fj, {-1, 1}, 
Hyperplane normal splitting vector w is evaluated as

              
1

j j
j

N
jw c y f

=
= ∑                                                   (14)

3.  RESULTS AND DISCUSSIONS
Performance evaluation of classifiers is compared using 

average sensitivity, classifier accuracy, and average specificity. 
Average Balanced Classifier Rate (BCR), geometric mean of 
average values of specificity and selectivity as well as Area 
below curve (AUC) of classifier response are chosen for 
evaluation. Overall proposed method performance is assessed 
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Table 2(a). Textural features extracted

Feature type Feature type

33 textural 
(includes 6 
histogram, 22 
Haralick’s, 3 
Tamura’s, 2 
Graylevel Run-
Length Matrix 
(GRLM)) 
features.

Six histogram features:
1. Mean, 2. Variance, 3. Third moment (skewness), 4.Fourth moment (kurtosis), 5. Entropy, 6.Energy.

22 Haralick’s features :
Uniformity(Energy/Angular Second Moment), Dissimilarity, Entropy, Inertia, Contrast, Inverse difference, Homogeneity 
/ Inverse difference moment, correlation, Cluster Prominence, Cluster Shade, Autocorrelation, Sum of Squares, Maximum 
probability, Sum Variance, Sum Entropy, Sum Average, Difference entropy, Difference variance, Information measures of 
correlation, Information measures of correlation, Inverse difference normalized, Maximal correlation coefficient, Inverse 
difference moment normalized.

3 Tamura’s features: Coarseness, Contrast, Directionality.

2 GRLM features: Short and Long Run Emphasis 

Table 2(b). Shape, intensity features extracted

Type Feature

Shape based features
{13}

Area, Perimeter, Compactness, Equivalent Diameter, Major axis length, Minor axis length, Orientation, Centroid, 
Nucleus to Cytoplasm ratio, Eccentricity, Convex area, Solidity, Extent.

Intensity feature{2} Intensitymax and Intensitymin, Intensitymean

Table 3. Performance assessment of classifiers

Parameter KNN17 MC-SVM 18

Average sensitivity (%) 97.13 98.24
Average selectivity (%) 93.76 97.57
BCR (%) 95.43 97.90
Classifier accuracy (%) 99.01 99.76
AUC 0.9703 0.9743

Table 4. Stage wise execution time

Individual stage Time in sec 
(mean±deviation)

Pre-Processing 2.35±0.21
Nuclei detection 3.26±1.56

Nuclei 
Segmentation

K-means22 8.53±0.83
MCW14 10.62± 1.34
MLS19 15.64±2.34
PM-I 6.83 ± 0.76
PM-II 4.75 ± 0.69

Feature Extraction 4.89±1.34
Tissue 
Classification

KNN 5.21±1.39
MC-SVM 1.17±0.67

by traditional parameters namely 

( )
P

EN
P N

TAverage SensitivityS
T F

=
+

( )
N

PE
P N

T
Average SpecificityS

F T
=

+

( )
P N

CC
P N P N

T T
Segmentation AccuracyA

T T F F
+

=
+ + +

Computational Time (CT): Difference between the return time 
of the algorithm at start-up of the process (tr,start) and the return 

time at the end of the process (tr,end).   i.e., CT = tr,start –tr,end
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where A and B respectively define the sets of algorithm 
and ground-truth segmented pixels,

True Positive TP: The total number of correctly detected 
true tumor pixels. A detected pixel is considered as TP when 
its Eucledian distance with ground truth pixel location is < 7.5 
μm(30 pixels),

True Negative TN: The total number of correctly identified 
false tumor pixels as non tumor pixels,

False Positive FP: The total number of detected pixels 
which are not appeared in the ground –truth,

False negative FN : The total number of non detected pixels 
that are appeared in the ground-truth.

Classifier accuracy and performance assessment of 
classifiers as represented in Table 3 and observed that the 
integrated segmentation approach (PM-II) of Contourlet and 
MLS with MC-SVM classifier provides high system accuracy 
and best classifier rate over traditional K-means partitioning, 
NSC, MCW, MLS, PM-I segmentation methodologies. The 
execution time for different steps performed in the discussed 
model was as represented in Table 4. On part of execution time 
also PM-II provides better evaluation when merged with MC-
SVM approach.

The proposed method is compared on basis of subjective 
performance measures using the literature techniques as 
described in Table 5. Using PM-II, we obtained better results 
than traditional approaches. The results were also compared to 
ground-truth results provided by the pathologist.
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Table 5. Quantitative state-of-art evaluation of proposed method using the literature techniques

Reference Number of images Resolution 
(pixels)

Segmentation algorithms 
used

Features 
extracted 

Quantitative 
performance measures

Ali5, et al. 100 histology 512 × 512 
Active contour models using 
multiple level sets. Shape 

Hausdorff distance (HD) 
5 pixels over 95 %, Mean 
Absolute Distance (MAD)
ACC>90 %

Fatakdawala9, 
et al. 100 histology 200 × 200 

Expectation maximisation 
driven geodesic active 
contour (EMaGAC) without 
and with overlap resolution

Texture 

SEN : 86 %, PPV : 64 %, 
HD : 2.1, MAD : 0.9,
Overlap resolution : 90 % 

Plissiti4, et al. 90 images 1536 × 2048 Color gradient watershed 
transform 

6 shape, 8 
texture, and 3 
Intensity 

HD: 1.71 (mean) ± 0.54 
(std).

Mouelhi13, et al.

18 images with 
3-amino-9-
ethylcarbazole 
chromogen
and 42 images 3_ 
diaminobenzidine 
chromogen

2048 × 1360 
Modified geometric active 
contour model and touching 
nuclei method 

Color and shape ACC : 97 %

George11, et al. 92 breast cytological 
images.

640 × 480 Marker-controlled 
watersheds transform.

12statistical, 10 
textural and 2 
intensity 

SEN : 95.49
SPE  : 83.16

Proposed method
96 training
and 24 testing 
images

760 × 570 NSC integrated with MLS.
13 shape 33 
textural and 2 
intensity 

SEN : 98.77 %
SPE : 97.81 %
ACC : 99.02 %
CT : 16.42±4.47 s 
PPV = 89.74
DI = 0.95
F1 = 0.91

4.  FUTURE SCOPE
Proposed Model-II is applied to electron microscopic 

(biopsy) images. PM-II proves as the best combination over 
the discussed traditional techniques. This module can also 
preferred to all military applications, like remote sensing 
imagery, where initially need to acquire it and then understand 
the imagery, followed by segmentation of required area, and at 
last  categorisation. Also applicable to ‘Autonomous vehicle’, 
an image processing advanced defence application. This vehicle 
possesses a computer vision module that grasps the 3D scenic 
images. 

5. CONCLUSIONS
Automated characterisation approach was presented 

for BC recognition from microscopic tissue images with HE 
staining using clinically interpretable feature set. Optimised 
investigation on cell nuclei depends on enhancement and 
segmentation methodologies used. For image efficacy, CLAH 
equalisation method is chosen and biopsy image is enhanced 
using NSC transform for good recovery of edges. For 
nuclei segmentation, K-means, PM-I and PM-II techniques 
are utilised. AMCW retains all image details as SE size is 
adaptive. PM-I integrates AMCW method with NSC transform 

methodology; PM-II integrates NSC result with MLS. Among 
all categories, anticipated segmentation method performs better 
area extracted result than traditional MCW, region growing, 
MLS, PM-I approaches for nuclei extraction. After tissue 
image segmentation, obtained 49 features set for 96 training 
tissue images. Out of respective features, we choose 11 features 
for characterisation. Diverse sorting methods used were kNN, 
and MC-SVM classifiers. Local inhomogeneities problem is 
also solved using NSC integrated with AMCW transform. 
There is hike in performance measures i.e., average specificity, 
accuracy, sensitivity, BCR for MC-SVM to 97.57, 99.76, 
98.24, 97.90 respectively over KNN classifier. Also there is 
an enhancement of AUC for MC-SVM to 0.9703 compared to 
KNN. The segmentation and classification results were tested 
for 24 images and compared with the manual results taken from 
the pathologist. The Average sensitivity, average specificity, 
PPV, average accuracy of all BC histopathological images 
using the proposed method were obtained as 98.77 per cent, 
97.81 per cent, 87.94 per cent and 99.02 per cent, respectively. 
The computational time required for whole process including 
pre-processing, detection, nuclei segmentation, and nuclei 
classification is 16.42 ± 4.47 s. Higher the F1-score and dice 
index better is the classification, those are obtained as 0.91 



74

RAJyALAKSHMI, et al.: DEF. LIFE SCI. J., VOL. 4, NO. 1, JANUARy 2019, DOI : 10.14429/dlsj.4.11683

and 0.95, respectively. The PM-II provides better subjective 
evaluation compared to the literature techniques discussed. 
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