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ABstrACt

The enduring diagnosis of patient’s medical records might be useful to determine the causes that are responsible for 
a particular disease. So that, one can take early preventive measures to curtail the risk of diseases that may occur with the 
growing age. Consequently, this can enhance the life expectancy probability. Here, a new algorithm CMARM is proposed 
for analysis of symptoms in order to find out the disease that may occur frequently and rarely with growing age. It uses 
map reduce paradigm inspired by cognitive learning. It is concerned with acquisition of problem-solving skills, intelligence 
and conscious thought and uses prevailing knowledge to generate new rules. It has been evaluated over synthetic data sets 
collected from the health data repository. Since, CMARM requires one-time file access therefore, it is consistently faster and 
also consuming less memory space than the FP tree based algorithm.
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NOmeNClAtures 
HDFS  Hadoop distributed file system, 
Sθ  Minimum support value, 
LS Least minimum support

1. INtrODuCtION
Presently, diseases are considered as one of the major 

factors for illness and death in human life span. According 
to WHO, ischemic heart disease, stroke, lower respiratory 
infections and chronic obstructive lung disease are the major 
cause of death from the past decade12. The early analysis of 
any such disease that frequently and rarely occur with the 
increasing age can be helpful in curing the disease entirely or 
to some point at early stage and increase the life expectancy 
probability. There are number of factors that are responsible 
for affecting the health of individuals and communities; and 
eventually give birth to the numerous kinds of diseases. Since, 
the medical domain is becoming an increasingly data intensive 
field as doctors and researchers generate gigabytes of medical 
data related to patients and their illnesses. Also, the rapid 
advancement in automation of the healthcare industry produces 
a vast amount of complex and heterogeneous, both structured 
and unstructured data which it is difficult to analyze in order to 
make any important decision regarding patient health14,16.

There are number of algorithms implemented in order 

to classify, cluster and find hidden patterns in data sets. Basic 
approaches of association rule mining1,4,7 may be good for 
frequent itemset mining but is not necessarily appropriate when 
rare item set are most desirable2, as the number of uninteresting 
rules increases with decrease in minimum support value. To 
overcome this issue, a new algorithm CARM is proposed based 
on cognitive learning18, where author introduces a new parameter 
called an interestingness measure to find out rare itemset among 
the given datasets. The negative aspect of CARM algorithm is that 
the parameter for selecting active items and interesting rules is 
predefined by user18. It would be desirable to set these parameters 
automatically using data statistics. Moreover, statistical analysis 
of CARM is difficult due to use of matrices in the implementation 
of CARM algorithm18. Another algorithm named FSM-H based 
on concept of map reduce paradigm18 is very efficient in terms of 
time, accuracy and for handling big data. However, author shows 
the performance of FSM-H is complex to a certain extent compare 
to other algorithms and also complexity increases with increase 
in dataset size. Majali19, et al. proposed an algorithm which is 
an automatic procedure, called self-structured confabulation 
network for fast anomaly detection and reasoning. This model 
comprises a distinct node that contain both spatial and temporal 
relations among the features of the dataset.

Different mining algorithms are proposed to find out 
frequent and rare itemset and also association rules among 
them. But there are certain drawbacks associated with them like 
some required multiple database scanning, time consuming, 
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less efficient etc1,2,11,21. Also, in order to apply mining methods 
for clinical data, the researchers shall additionally resolve the 
problems related to patient privacy, semantic interoperability, 
heterogeneous data sources and unstructured data presented 
in text or media formats. To overcome all these issues, a 
new algorithm CMARM-confabulation based map reduce 
association rule mining algorithm is proposed. The algorithm 
is based on how human brain recognises the existing itemset 
and finds association rules among them15,18,19. 

CMARM is implemented using concept of map reduce 
paradigm of distributed computing because it is based on the 
data centric approach of distributed computing for analyzing 
huge data sets 18. The key idea of the proposed work is to 
design an involuntary procedure that learns structure of a 
confabulation network from input datasets and mine association 
rules for frequent and rare itemset by strengthening knowledge 
link between itemset.

2. methODs 
The proposed algorithm is designed as an iterative map 

reduce procedure based on confabulation method20,22,23. It is 
processed in two steps:
1. Finding frequent and rare itemset using map reduce 
procedure5,8,17,24.
2. Mining association rules for generated frequent and rare 
itemset using confabulation method.

To implement first step, map reduce framework17 is used 
to signify knowledge links with weak strength using threshold 
value of support count. This leads to the generation of frequent 
and rare itemset, whose support count is greater than the 
minimum specified support count value. In second step, strong 
association rules are generated based on confabulation theory, 
which states20;

Fr = {x ∊ I |support_count(x) ≥ Sθ} (1)

Here Sθ is the minimum support value. It considers S1= 
Fr where S1 is set of initial itemset. After finding n-itemset, 
algorithm generates all rules using their support, confidence 
and interestingness parameter for selecting active items and 
interesting rules that strengthen the knowledge link between 
the itemsets13,20.

2.1 Design model
The CMARM approach is divided into three modules20,22,23;

(i) Creating distributed cluster: Since, the medical data 
deals with voluminous and heterogeneous data structure. 
Therefore, to handle such big amount of data HDFS is 
used3,10,14. The data files are also stored across multiple 
machines in redundant fashion. Thus, makes the proposed 
system is also fault tolerant. It also makes applications 
available to parallel processing.

(ii) Finding frequent and rare itemset: Here, minimum 
support value is used to delete irrelevant items by ignoring 
the items whose count is less than specified minimum 
support value. There are two functions defined; mapper 
and reducer to work on this module. Mapper divides input 
dataset into small datasets such that these small datasets 

are passed to each iterations of mapper function and 
corresponding result of reducer function is observed. The 
mapper via map method processes single line at a time. 
It then splits the line into key-value pair of < <disease>, 
count> for each age-group. The Reducer, via reduce 
method sums up the values, which are the occurrence 
count for each item set.

(iii) Finding association rules for frequent and rare itemset: 
This module deals with the finding of association rules 
based on confabulation theory. This means in every loop, 
mapper generates some rules such that only those rules 
are considered whose probability to win is maximum. 
Association rules are used to determine the category 
in which given disease is fall. This category would be 
used in the generalisation of patient record intensely and 
categories the patient into specific category indicating the 
disease with which he is suffering mainly. For example, 
if a patient suffers from 'abdominal hernia', then this 
disease is falls in category 'diseases and disorders of the 
digestive system' indicating he suffers from diseases and 
disorders of digestive system. Each category is associated 
with some confidence value which show that if rule XàY 
holds with confidence c then c% of transaction in data 
set D that contain X also contain Y. Confidence value is 
calculated as;

Confidence (X → Y) = SUPP (X U Y) / SUPP(X) (2)

Where, SUPP (X U Y) and SUPP(X) is support value 
for (X U Y) and X. Support value determines how often a 
rule is applicable to a given data set. For rule Xà Y, support 
value of X with respect to transactions T is defined as 
percentage of transactions which contains item-set X. It is 
calculated as;

Support (X → Y) = probability (X U Y) / N (3)

Where, N is the total number of transactions. Basically, 
association rules are find out in order to conclude if a person 
is suffering from any particular disease then, there is also a 
chance that he may also suffer with other disease arises from 
that particular disease.

2.2 Algorithm
2.2.1  Pseudocode of Iterative map reduce algorithm:

1. While (itemset! = null)
2. Execute Mapreduce Job
3. Write result to DFS
4. Update condition

Here, line 2 and 3, performs the filtering and partitioning 
of input dataset horizontally into P node subsets and distribute 
it to Q nodes supersets and writes each partition result in the 
HDFS20.

2.2.2 Pseudocode of CMARM algorithm:
1. S1 = Fr // set of all frequent and rare itemsets-1 
2. Find S2, the set of all frequent 2 itemsets
3.  Find all rules from 2-itemsets (according to their 

support and confidence)
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4. While Sk ≠ Ø
4.1.  Sk = Frequent-Rare-itemset_

Generation(Sk , count)
4.2.  for all c ∊ Dk+1 // for all item c belongs 

to given datasets
4.3.  while c  _count > min_Support
4.4.  //Support_counting(c,D)
4.5.  if cogency Xà Y > (interesting_measure 

and min_confidence)
4.6.  add Sk+1 = Sk+1 + {c} // find 

association rules for frequent and rare 
itemsets

4.7.  end for
5. K= K+1
end while 

Here, line 4.1 signify that mapper generates static data 
structure and emits key-value pair of all single length patterns 
to reducer. Line 4.3, discards the itemset whose support count 
is less than minimum support, which is a user defined variable. 
After finding frequent and rare itemset, next step is to extract 
strong association rules and it is done in line 4.4 and 4.5. Here, 
mapper computes variations of user-feature and item-feature 
pair. These variables are used as an interestingness measure 
for selecting active items and interesting rules for frequent and 
rare itemset. Then, reducer computes the sum of changes and 
applies this to each item rating by updating appropriate feature 
and directs this to mapper function again for next iteration.

2.3 Dataset 
In order to validate CMARM, an empirical evaluation is 

performed on dataset retrieved from a health data repository 
provided by SPARCS9. The patient record is grouped into 5 
different age groups such as 0 -17, 18-29, 30-49, 50-69, 70 or 
older and for a particular age group frequent and rare disease is 
evaluated for both female and male category.

2.4 results
Tables 1 and 2 show the summary of frequent and rare 

disease in each age group for year 2012 and 2013, respectively 
at Sθ = 5. Table 4 display summary of association rules with 
confidence value for both frequent and rare disease for year 
2013 at Sθ = 5. It shows that at the age group of 30-49, Most of 
the male person suffers from back problem that comes under 
the category of diseases and disorders of musculoskeletal 
system and conn tissue and rarely suffers from other nutrition 
disorder which may also suffers from endocrine, nutritional 
and metabolic diseases and disorders. 

2.5 Performance metrics
Comparison of CMARM with other existing algorithms is 

done by considering three parameters as accuracy (in terms of 
Recall and Precision), computational performance (in terms of 
time taken to process the dataset), and memory consumption in 
terms of number of nodes maintained18. 

Precision and Recall: Let  be the set of frequent 
itemsets generated by CMARM and  be the set of correct 
frequent itemsets. Then,

Precision =  (4)

Recall =  (5)

Similarly, precision and recall is calculated for rare 
itemset. Table 3 shows precision and recall value of CMARM 
and CFPgrowth at different minimum support value with noise 
level 0.05. A high value of precision indicates obtained items 
from the algorithm have been predicted correctly, but there 
might be some items have not been identified yet6. The good 
accuracy will be achieved by getting the highest precision and 
recall simultaneously. Conversely, algorithm should predict 
the maximum number of features correctly while generating 
less irrelevant results. Hence, for this F-score is calculated to 
trade off precision versus recall. 

F-score = 2* (precision * recall) / (precision + recall) (6)
Figure 1 and Fig 2 shows that CMARM is more efficient 

and scalable in terms of execution time and memory usage 
than CFP growth and FIN algorithm, since:
By increasing number of dataset, memory usage of CFPgrowth 
increases distinctly due to boost in the size of tree, whereas 
the memory usage of CMARM remains nearly constant with 
increase in number of items as shown in Fig. 4.
Execution time has a steady trend as shown in Fig 1, due to 
the enlarging tree size with growing number of transactions. 
Execution time includes both time spent for constructing data 
structure and time spent for mining18. 
Though CFPgrowth has a flat memory usage trend, it still 
needs more memory space than CMARM18. Consequently, 
height of the tree and mining time decreases in CFPgrowth as 
shown in Fig. 2. 
When CMARM compare with FIN algorithm, memory usage 
of FIN is increased markedly due to enhancement in size of 
tree again. Execution time also increases tremendously with 
increase in number of transactions as size of tree also increases. 
So, CMARM is better than FIN algorithm as memory usage and 
execution time are only depend on the number of transactions. 
Hence, it requires only one scanning of the database and show 
a stable execution time and memory usage with increase in 
number of transactions as shown in Fig 1 and Fig 4 respectively. 
To shows that CMARM is more reliable than existing algorithm 
like CFPgrowth and FIN, let’s find out the time and space 
complexity of CMARM. Since, CMARM is based on the 
concept of map reduce paradigm. Therefore, each node in the 
cluster of map reduce is likely to report intermittently with 
completed work and status updates. If a node waits for longer 
than specified time, the mapper function archives the node as 
dead and sends out the node’s allocated work to other nodes. 
Similarly, reducer works in the same way.

 Time and space complexity18: A language L is accepted by 
CMARM [f(n), g(n)], if there is a constant 0 < c < 1 and a 
sequence of mappers and reducers m1, r1, m2, r2, m3, r3…… 
such that for all x ∈ {0,1} n the following is satisfied:

a. Let S= O(F(n)) and M = (m1, r1, m2, r2, m3, r3……mn,rn), M 
accepts x if and only if x ∈ L.

b. For all 1≤ r ≤ n, mn,rn use O(nc) space and O(g(n)) time.
c. Each mn outputs O(nc) keys in round n.
 Therefore, space and time complexity of CMARM is 

polynomial bounded. 
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min_sup(%) Precision recall
CmArm CFPgrowth CmArm CFPgrowth

0.8 91.04 99.99 75.56 75.76
1.0 90.52 100 77.56 77.56
1.5 91.69 100 78.78 78.78
2.0 97.52 99.98 82.03 82.03
3.0 99.40 99.99 83.04 83.04

table 3. Precision and recall of mining result by CmArm and CFPgrowth

Figure 1. run time on Data sets with 1K item. Figure 2. memory usage on data sets with 1K items.

4. CONClusIONs
CMARM is proposed to diagnose patient medical records 

in order to find out frequent and rare diseases that may occur 
in different age groups. Also, this leads to the determination of 
association rules for the diagnosed disease set. It is processed in 
two steps i.e. knowledge acquisition and rule extraction. Result 
show that CMARM is much faster than Apriori and FP tree 
based algorithm due to one-time file access. It is also efficient 
and scalable in terms of memory usage, Fig. 2 and execution 
time, Fig. 1. in comparison to other FP tree based algorithms like 

CFPgrowth and FIN algorithm. It is also concluded that CMARM 
can produce higher performance for mining association rules 
from rare items, particularly when rare items are important. 

5. Future sCOPe
There are a number of interesting directions for future 

work of CMARM. First, CMARM uses the interesting 
measure as a parameter which set automatically using data 
set statistics. In future, this measure can be modified to 
enhance the accuracy rate in result by understanding the 

Frequent disease rare disease
Age Group male Female male Female

0 -17 Liveborn Liveborn GU congenital anomaly Fluid disorder
18-29 Schiz/Other Psych Disorder OB perineal trauma Back problem Other benign neoplasm
30-49 Back problem comp birth /puerprm Bronchial/Lung cancer Endometriosis
50-69 Osteoarthritis Osteoarthritis Fluid/Electrolyte disorder Enteritis/ulcer colitis
70 or older Aneurysm Osteoarthritis Biliary tract disease Epilepsy/ convulsions

table 1. Frequent and rare disease for dataset of year 2012 at Sθ =5

Frequent disease rare disease
Age Group male Female male Female

0 -17 Liveborn Liveborn Other conn tissue disease Headache/ migraine
18-29 Crush/ internal injury Other pregnancy complication Chest pain Headache /migraine
30-49 Back problem nutrition disorde r Psychotropic poisoning genital prolapse
50-69 Osteoarthritis Osteoarthritis Other endocrine disorder Abdominal pain
70 or older Device/ implant Acute CVD Other benign neoplasm genital prolapse

table 2. Frequent and rare disease for dataset of year 2013 at Sθ =5
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Age group
Frequent disease rare disease
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table 4. Association rules for frequent & rare disease for dataset of year 2013 at Sθ =5. Here, c is the confidence percentage

data statistics. Second, CMARM could be mainly useful in 
case of data sets that are dynamic due to its one scanning 
of file access and hence frequently updated. Third, due to 
distributed nature of CMARM, it may present a logical 
advantage predominantly on the more modern processing 
units such as cluster-based and graphical processor units. 
Hence, one can hope to tackle efficiency of CMARM 

implementation further from a software/hardware aspect.
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