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NomeNclature
 OP  Organophosphorus
AChE Acetylcholinesterase
ACh Acetylcholine
CNS Central nervous system
2-PAM Pralidoxime
TMB-4 Trimedoxime
HI-6 Asoxime
BBB Blood-brain barrier
PAS Peripheral anionic site

1. INtroductIoN
Parathion (O,O-diethyl-O-4-nitro-phenylthiophosphate), 

an organophosphorus (OP) insecticide with acaricide properties, 
has been widely applied in agriculture over the past decades1. 
Application of parathion is still legal in many developing 
countries, leading to elevated cases of human poisoning, 
despite having been listed as ‘extremely hazardous’ by the 
World Health Organisation and banned in many developed 
countries due to its high toxicity2. Among pesticides, OPs are 
the most toxic to vertebrates, accounting for 2/3 (over three 
million cases) of human poisoning death worldwide3. Toxic 
exposure to OP may occur through inhalation, ingestion or 
transdermal exposure4. 

In addition to their use as insecticides, some OPs (Sarin, 
Soman, Tabun, VX) are ‘nerve agents’ and have been used as 
chemical weapons in terrorist attacks5. OPs have the capacity to 
irreversibly inhibit AChE and butyrylcholinesterase activities 
by phosphorylation of the serine residue in their active sites6. 
Inhibition of AChE and butyrylcholinesterase results in 
ACh accumulation in cholinergic synapses of the peripheral 
and central nervous systems. Increased ACh overstimulates 
muscarinic and nicotinic receptors, resulting in peripheral 
muscarinic (salivation, lacrymation, nausea, bradycardia, 
bronchosecretion), nicotinic (skeletal muscle fasciculations, 
diaphragm and intercostal paralysis) and central (muscle 
tremors, convulsions, coma and respiratory depression) 
manifestations that lead to death7- 9. 

Current antidotal regimens approved for human 
treatment of OP poisoning consist of a combination of 
muscarinic receptor antagonists (atropine), anticonvulsants 
(benzodiazepines) and AChE reactivators (oximes), such 
as obidoxime, 2-PAM, TMB-4 and HI-610,11. These oximes 
have a high affinity for AChE and have strong nucleophilic 
character. The first step to reactivation is associated to attack 
of oxime at phosphorus atom of the phosphorylated enzyme, 
removing the phosphoryl group from serine at the active site 
of AChE12,13. AChE catalytic properties can be modified by the 
reversible binding of oximes at different catalytic sites (active 
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or allosteric)14. Although approved as antidotes, these oximes 
are not sufficiently effective to reactivate AChE inhibited by 
the different OPs15,16. The mono-quaternary oxime 2-PAM is 
very efficient in reactivating AChE inhibited with sarin or VX17 
but is not effective against tabun or soman18. Obidoxime is the 
most potent and most efficacious oxime in reactivating AChE 
inhibited by various classes of OP insecticides and tabun, but 
was inferior to oxime HI-6 against soman, sarin, cyclosarin 
and VX19. A significant drawback to these oximes is they are 
permanently charged and do not readily cross the blood brain 
barrier (BBB)20. As a result, they show only limited activity 
in the CNS, which is a major target of OPs. Thus, effective 
reactivators as antidotes are increasingly needed against a 
broader spectrum of nerve agents21. 

Introducing non-quaternary organic compounds has 
been a novel method of efficiently penetrate the BBB for 
reactivation of brain AChE22. Non-charged oximes have 
previously been developed with improved BBB penetration23-

29 and sufficient reactivation of AChE inhibited by nerve agents 
and insecticides24,30. Even with improved BBB penetration 
and reactivation of AChE, the specific oxime structures with 
superior reactivating potency to those in use remain unknown. 

The work proposed here evaluated the ability of ten known 
neutral oximes (fig. 1) to reactivate parathion-inhibited electric 
eel AChE. To our knowledge, this work is the first to describe 
the interactions of these oximes with AChE. Understanding the 
activity of various neutral oximes will be useful for subsequent 
design and synthesis of conjugates containing non-quaternary 
oximes that are capable of binding to both sites of AChE, 
thereby leading to enhanced reactivation potency. 

2. materIals aNd methods
2.1 chemicals

Electric eel AChE (EC.3.1.1.7), 5,5’-dithiobis-(2-
nitrobenzoic acid) (DTNB), acetylthiocholine-iodide 
(ATCI), 2-pyridine aldoxime (2-PAM), parathion (O, O- 
diethyl O-4-nitrophenyl tiophosphate), 2-bromo-, 3-bromo-, 
4-bromobenzaldehyde, 2-chloro-, 4-chlorobenzaldehyde, 
4-hydroxy-3-methoxybenzaldehyde, 3,4-(methylenedioxy)
benzaldehyde, 4-nitrobenzaldehyde, 4-pyridinecarboxaldehyde 
and 4-cyanepyridine were acquired from Sigma-Aldrich 
(Brazil). Dichloromethane, ethyl acetate, hexane, ethanol and 
methanol were purchased from Tedia (Brazil). 

2.2 synthesis of oxime derivatives
All neutral oximes (fig. 1) were prepared by reaction of 

the respective aldehydes with hydroxylamine hydrochloride. 
Aldehyde (6 mmol), 6 mL of distilled water, 20 mL of ethanol 
and hydroxylamine hydrochloride (18 mmol) were combined 
in a 50 mL round flask. All reactions were conducted 
with microwave irradiation (P = 80 W) for 15 min, except 
reactions employing 4-hydroxy-3-methoxybenzaldehyde and 
4-cyanepyridine, which were conducted at 60 ºC for 24 h 
under constant stirring. All reactions were monitored by thin 
layer chromatography (TLC – hexane:ethyl acetate-1:1) until 
the aldehydes were totally consumed. Chromatographic plates 
were examined under ultraviolet light (254 nm). Products were 
extracted with dichloromethane (3 x 25 mL) and the organic 

phase was separated and dried with sodium sulfate. finally, the 
solvent was removed in a rotatory evaporator and the product 
was purified by flash chromatography on a silica gel column 
using a gradient of polarity (hexane:ethyl acetate)31. All neutral 
oximes were characterised by mass spectrometry and 1H 
NMR, and the signals were compared with those reported in 
the literature. All mass spectra presented molecular ion values 
compatible with the expected values. 1H NMR showed signals 
around δ 8.00 – 7.20, which were associated with iminic 
hydrogen (-CH=N-O-). This value was compatible with the 
syn isomer, because the anti isomer has lower values of δ32. 

2.3 enzyme activity determinations
AChE activity was monitored spectrophotometrically 

(Vmax Microplate reader; Molecular Device) at 405 nm with 
an Ellman assay33 modified34. AChE stock solution (stock A) 
(25 units/mL) was prepared in phosphate buffer (100 mM, 
pH 7.4). An aliquot of stock A was then diluted 60 times with 
phosphate buffer to give stock B. ATCI (20 mM) was prepared 
in distilled water. DTNB (10 mM) was prepared in phosphate 
buffer (100 mM, pH 7.4). 2-PAM (dissolved in distilled water), 
parathion (dissolved in ethanol) and neutral oximes (dissolved 
in methanol) were prepared at a concentration of 10 mM and 
diluted appropriately in phosphate buffer (100 mM, pH 7.4) 
to the desired concentrations immediately before use. All 
solutions were kept on ice during the experiment. The final 
ethanol or methanol concentration in the assay medium was 
less than 1 per cent and did not inhibit the enzyme activity at 
that concentration. All experiments were performed at 25±2°C. 
The values depicted in the figures are the average of three 
independent assays performed in triplicate in a 96-wells plate. 

2.4 In-vitro Inhibition of ache 
All experimental wells received AChE stock B, DTNB 

(0.25 mM), and phosphate buffer (control – enzyme activity) 
or neutral oximes solutions (10-3 mM, 10-2 mM, 5 x 10-2 mM, 
10-1 mM, and 2x 10-1 mM). The mixture was incubated for 10 
min at 25 °C. Then, ATCI (0.5 mM) was added to all wells and 
the plate was read immediately for 2 min. The spontaneous and 
oxime induced hydrolysis of the substrate (oximolysis) were 
evaluated by replacing enzyme for buffer and the activities 
were corrected for these two parameters. Inhibition is given 
relative to the control (non-inhibited enzyme; 100 per cent 
activity). All concentrations refer to final concentrations. The 
volume of the sample in each well was 0.2 mL. 

2.5 In-vitro reactivation of ache
The incubation mixture was prepared by the addition of 

parathion (0.1 mM) to a mixture of AChE (stock B) and DTNB 
(0.25 mM). The mixture was allowed to stand for 60 min at 
25°C to give 76 ± 1 per cent inhibition of enzyme activity. Then, 
the neutral oximes solutions (2x10-1 mM; 1 mM) were added to 
start reactivation. After 10 min of reactivation, ATCI (0.5 mM) 
was added and the plate reading was done immediately for 2 
min. The control enzyme activity at 70 min (without inhibitor 
and oxime) and the inhibited enzyme activity (without oxime) 
were determined as described above. All concentrations given 
above are the final concentrations in the well. The volume of 
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the sample in each well was 0.2 mL.
Percentage reactivation was calculated using the following 

equation34,
% Reactivation = (Er – Ei/ Eo-Ei) x 100 

where E0 is the control enzyme activity at 70 min (without 
inhibitor and oxime), Ei is the inhibited enzyme activity (without 
oxime) determined as described above and Er is the activity 
of reactivated enzyme after incubation with the oxime test 
compounds. Spontaneous reactivation of inhibited AChE was 
assayed using the same protocol, the reaction mixture contained 
enzyme and parathion without oxime. Under these conditions 
spontaneous reactivation was found to be insignificant. All the 
values were corrected for their oximolysis. 

2.6 statistical analysis
All calculations were performed using graph pad prism 5 

software (San Diego, CA, USA). The results were analysed by 
analysis of variance (ANOVA). p values less than 0.05 were 
considered statistically significant. The results were expressed 
as means ± SD of three independent assays, each one performed 
in triplicate.

3.  results
3.1 In-vitro Inhibition of ache by Neutral oximes

Because oximes bind to AChE as reversible inhibitors and 
form complexes with AChE either in the active site, allosteric 
site or in both sites of the enzyme, the inhibition capacity of the 
neutral oximes 1 to 10 (fig. 1) was evaluated.

The results of the inhibition experiments are depicted in 
fig. 2(a) and 2(b). Inhibition is given relative to the control 
(non-inhibited enzyme presenting 100 per cent activity). 
2-PAM was the reference compound. 

As seen from figs. 2(a) and 2(b), 2-PAM showed higher 
affinity for AChE than neutral oximes, inhibiting the enzyme 
in a concentration-dependent manner. In general, the neutral 
oximes were not good inhibitors. The greatest inhibitory 
potency (37 per cent) was observed for neutral oxime 8 at a 
concentration of 200 µM. At 200 µM, neutral oximes 1, 2 and 
7 inhibited the enzyme by only 13 per cent, 10 per cent and 
23 per cent, respectively. Neutral oxime 6 had no inhibitory 
effect. Neutral oximes 3-5, 9 and 10 significantly inhibited 
the enzyme at concentrations from 10 µM to 200 µM, but the 

inhibition percentage remained at approximately 20 per cent 
even with increasing concentrations of inhibitor. 

3.2 In-vitro reactivation of ache
The in-vitro reactivation of parathion-inhibited eel 

AChE by neutral oximes is depicted in Table 1. The results 
were compared with the standard oxime reactivator 2-PAM. 
from these data, it can be seen that neutral oximes 1 and 2 
reactivated parathion-inhibited eel AChE by 9 per cent and 11 
per cent, respectively, at a concentration of 200 µM. However, 
neither neutral oxime 1 or 2 surpassed the reactivation efficacy 
of 2-PAM (25 per cent). Regardless, it is worth noting that at a 
concentration of 1000 µM, neutral oximes 2 and 5 reactivated 
24 per cent and 19 per cent of AChE activity, respectively, 
while 2-PAM was not able to reactivate the enzyme.

It is known that at elevated concentrations, 2-PAM has 
esterase-like activity against acetylthiocholine35-37. figure 3 
shows the intense oximolysis (esterase-like activity) of ATCI 
by 2-PAM at 1000 µM and the real activity (activity observed 
– oximolysis) in the presence of 2-PAM. The results show that 
better reactivation of 2-PAM occurred at 10 µM.

Indeed 2-PAM is much better reactivator than the neutral 
oximes since at a concentration of 10 µM reactivation of 
AChE-parathion inhibited was 42 per cent (fig. 4). None of the 
neutral oximes exhibited oximolysis or were able to reactivate 
parathion-inhibited AChE at concentrations below 200 µM. Figure 1. chemical structure of neutral oximes.

Figure 2. reversible inhibition of eel ache by (a) neutral 
oximes 1-5 and 2-Pam and (b) neutral oximes 6-10 
and 2-Pam. the values are the average ± s.d of three 
independent assays, each one performed in triplicate. 
*P<0.05 aNoVa.

(a)

(b)
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Neutral oximes pKa values (ACD/Labs Software; data not 
shown) were around 10.

4. dIscussIoN
Oximes can bind to AChE as reversible inhibitors by 

binding to the active site, allosteric site or both sites. A 
concentration-dependent inhibition is usually observed when 
the inhibitor binds to the active site. The neutral oximes tested 
in this study were not good inhibitors of AChE. The result was 
expected because it has been shown that the absence of charge 
affects the reactivity of the nucleophilic oxime moiety and also 
reduces its affinity for the active site in AChE38. Instead, 2-PAM 
inhibitory activity is attributed to the binding of this compound 
to an anionic site in the active site of AChE39,40. Because it 
has been shown that neutral ligand can exhibit affinity for the 
PAS site24,25, the low inhibitory power observed for the neutral 
oximes could be attributed to their binding to the PAS, which 
may modulate the catalytic activity of the active site. The main 
component of the PAS is an aspartate residue (D74) that is part 
of an omega loop (Cys65-Cys92) that allosterically links PAS 
to the active site41,42. In general, compounds commonly shown 
to be AChE reactivators have lower inhibitory potency43. 

According to the results (table 1), neutral oximes 1, 2 
and 5 exhibited significant reactivation of parathion-inhibited 
AChE. 2-bromine aldoxime (neutral oxime 1) reactivated the 
complex at a concentration of 200 µM, 3-bromine aldoxime 
(neutral oxime 2) was able to reactivates AChE at both 200 µM 
and 1000 µM concentrations and 4-chlorine aldoxime (neutral 
oxime 5) reactivated the enzyme at a concentration of 1000 
µM. The human non-toxic concentration of one reactivator 
was found to be 10-4 M and lower44. So, although an increase 
in AChE activity of 5-10 per cent allows for survival in cases 
of organophosphorus intoxication45,46, neutral oxime 5 could 
not be designated as a good reactivator. At a concentration 
of 200 µM, neutral oxime 1 presented reactivation potency 
similar to that of neutral oxime 2 and was unable to reactivate 
AChE at a concentration of 1000 µM. Both oximes differ only 
in the position of bromine. It seems that bromine at position 
3 increases the affinity towards the enzyme. None of the 
neutral oximes surpassed the reactivation efficacy of 2-PAM. 
However, it was not the goal of this study to develop a better 
reactivator than 2-PAM. 

Our goal was to find structures capable of reactivating 
AChE via PAS that could serve as PAS ligand moieties in the 
development of conjugates able to bind to both sites of AChE. 
Neutral oximes 1 and 2 are possible candidates to be a PAS 
ligand moiety because they reactivated the parathion-inhibited 
AChE at a concentration non-toxic in humans. Moreover, 
the non-ionic character of these oximes should increase the 
lipophilicity and BBB penetration of the conjugates. Although 
we know that the structural and functional differences between 
human, animal and electric eel AChE may result in a different 
affinity and reactivity of oximes, we have been working with 
electric eel AChE due to its ready availability, which facilitates 
screening assays.

Some reports have demonstrated that an allosteric 
enhancement of reactivation of carbamoylated or 
phosphorylated acetylcholinesterases occurred through PAS 

Figure 3. activity of parathion-inhibited ache with increasing 
concentrations of 2-Pam. the values are the average ± 
s.d. of three independent assays, each one performed 
in triplicate, compared to non-inhibited enzyme.  
oximolysis refers to non-enzymatic hydrolysis of 
atcI. *P<0.05 aNoVa.

Figure 4. calculated reactivation of parathion-inhibited ache 
with increasing concentrations of 2-Pam. the values 
are the average ± s.d. of three independent assays, 
each one performed in triplicate. *P<0.05 aNoVa.

reactivator        % reactivation = [(Er-Ei)/(Eo-Ei)] x 100
              eel ache (% reactivation ± s.d.)

200 µma 1000 µma

2-PAM 25.4 ± 3.6 0
1 9.2 ± 2.8 0
2 11.0 ± 3.7 24.1 ± 3.8
3 0 3.6 ± 2.0
4 0 0
5 0 19.5 ± 3.3
6 0 0
7 5.0 ± 0.4 0
8 0 0
9 0 0
10 0 0

aReactivator concentration.
The values are the average ± S.D. of three independent assays, each 
one performed in triplicate. *P<0.05 ANOVA.

table 1. reactivation potency of neutral oximes for parathion-
inhibited eel acetylcholinesterase
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occupation by peripheral site ligands47-49. furthermore, it 
was also shown that oxime-mediated dephosphorylation was 
accelerated in the presence of a ligand with affinity for the 
PAS50. De Koning24,25, et al. have presented a novel approach 
to the design of AChE non-ionic reactivators that can cross 
the BBB more efficiently. They assessed molecules whose 
characteristics were considered to be neutral and that exhibited 
a relatively weak affinity for the PAS. Molecules with these 
characteristics would be linked to a reactivating moiety via a 
spacer to enable these structures to interact with PAS and AS. 

5. coNclusIoNs
In this study, we assessed the in-vitro reactivation efficacy 

of ten neutral mono oximes against parathion-inhibited AChE. 
Based upon this study, oximes 1 and 2 showed promising 
reactivation activity. Knowledge obtained here will be 
useful for the subsequent design and synthesis of new non-
ionic conjugate reactivators with potentially improved BBB 
penetration. These types of reactivators could be useful for the 
treatment of intoxication by OP. Although these molecules are 
not new, this is the first time that these oximes have been tested 
against parathion-inhibited AChE. 
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