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ABSTRACT

Sulphur mustard (SM), chemically, bis (2-chloroethyl) sulphide is a bifunctional alkylating agent that 
causes cutaneous blisters in human or animals. It was first used in the World War I. Since then, there have 
been 11 conflicts where SM allegedely had caused mass distruction.  Additionally, discarded weapons and 
stockpiles periodically come to surface during agricultural or fishing activities leading to serious injury. 
Concerns for threat to modern societies by the serious effects of SM, agreements to ban its production and 
the use has been made as per 1993 chemical weapons convention (CWC) and agent destruction programs. 
This short review attempts to discuss the histroy, chemical nature, mechanism of toxicity, toxicokinetics, 
animal models used for SM induced skin and systemic lesions, pathogenesis of SM induced lesions including 
medical countermeasures for SM toxicity. 
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1. INTRODUCTION
Earliest forms of chemical warfare agents (CWAs) 

were natural toxins from plants or animals, which were 
used to coat arrowheads, commonly referred to as ‘arrow 
poisons’. These have been elaborately described in ancient 
Chinese literature. Successfully use of hellebores roots 
were also made in 600 BC by the Athenians to contaminate 
water supplies of besieged Greek city Cirrha. Spartan 
forces ignited pitch and sulphur to create toxic fumes 
during Peloponnesian War in 429 BC. With advancements 
in science and chemistry in the 19

th 
century, the possibility 

of chemical warfare increased tremendously. The 
employment of chemicals in war has a long history1,2. 
World War I has been called the ‘‘Chemist’s War’’ because it 
was the beginning of the modern era of chemical warfare. 
Chemical agents were used in wars, conflicts by terrorist 
and extremists, dictator’s activities, malicious poisonings 
and executions. Most of the key chemical warfare agents 
used during the war included: chlorine in1774; hydrogen 
cyanide in1782; cyanogen chloride in 1802; phosgene in 
1812; mustard agent in 1822; and chloropicrin in 18483. 

During the studies of interactions between olefins 
and sulphur halogen compounds, mustard gas [bis [2- 
chloroethyl] sulphide] was first synthesized in 1822 by 
Despretz and in 1860 by Niemann and Guthrie4. Both 
investigators noted the typical vesicant properties of 
the agent. In 1886, V. Meyer was able to synthesize SM of 
higher purity.5 In the distilled form; SM is designated as 
HD according to the US military code, which is used in the 
western countries. Other names include SM (typical odor), 

yperite (Ypres was the place of the first military use), Lost 
(acronym of the German chemists Lommel and Steinkopf 
who investigated the military use of the compound), and 
yellow cross [German shells were marked with a yellow 
cross skin damaging agent]. The United States and the British 
also researched mixing different chemicals with mustard 
agent. This work identified HL (a mixture of mustard agent 
and lewisite), HQ (sesqui mustard), the mixture of 40 per 
cent agent T and 60 per cent SM [SM] designated H agent T 
[bis-[2-[2-chloroethylthio] ethyl] ether is a similarly acting 
compound and HV (a thickened mustard agent). Both the 
sides also researched the nitrogen mustard agents2. 

SM is an effective vesicating [blistering] CW agent 
and since World War I, has been used in many conflicts 
which include its use by Italy against Ethiopia in 1936, by 
Japan against China in 1937, by Poland against Germany in 
1939, by Egypt against Yemen from 1963 to 1967 and by 
Iraq against Iran in the 1980s. The last military use was in 
the Iran–Iraq war. SM injured over 100,000 Iranians and 
one-third are still suffering from its late effects. Its use was 
threatened in the early 1990s during the Persian Gulf War. 
Although, weapons and stockpiles of SM were discarded 
on land and into the ocean during and after the Second 
World War6. Periodically they come to surface during 
agricultural or fishing activities leading to serious injury. 
Extensive production and stockpiling during the Second 
World War along with the serious effects of SM, have led 
to the agreements to ban its production and use. These 
agreements include the 1993 chemical weapons convention 
(CWC) and agent destruction programs. Nonetheless, 
this chemical warfare agent is still regarded as threat 
for modern societies and remains a threat owing to its 
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popularity in some countries that are not signatories to the 
CWC and to accidental exposures7. Besides their military 
use, SM and its analogues found their way into medical 
therapy. Their strong cytotoxic effects were found to be 
useful in the therapy of cancer8. The ease of availability of 
precursors, the simple method of synthesis and extremely 
stable nature of SM make it a weapon of choice by military 
and terrorist groups9,10.

1.1 Physico-chemical Properties of SM 
SM is a pale yellow, oily liquid having a molecular 

weight 159.08, specific gravity 1.27, viscosity 0.046 poise, 
refractive index 1.531, freezing point 14.4 °C that vaporizes 
at 25 °C and decomposes at 217.5 °C11. It is a liquid in cold 
and damp environment and easily vaporizes in warm dry 
environments. It is heavier than air with a density 5.6 times 
of air. It has an odor of mustard in the impure form but the 
pure form is colorless and odorless. It is sparingly soluble 
in water while soluble in fat and other common organic 
solvents. It easily penetrates ordinary clothes in vaporized 
form12. 

The half life for SM hydrolysis by water is about 3-5 
minutes13. The rate of SM hydrolysis is not pH dependent 
and is not altered by ions such as Ag+, Mn+, Ca+, and fe+++. 
Toxicity of SM is greater at higher temperatures, whilst 
at low temperature, mustard freezes, thus increasing its 
persistence. SM decomposes at higher temperatures to 
produce toxic compounds, including active lachrymators 
and hence disposal of material contaminated with SM 
should be undertaken with care. 

1.2 Chemical Identity of SM
Chemical abstract name: Ethane, 1, 1`- thiobis 

[2-chloro] [after 1971], Sulphide, is [2 chloroethyl] before 
1971. Other name: Bis [2-chloroethyl] sulphide; Chloro-
2[2-chloro-thylthio] ethane; 2, 2-dichlorodiethylo sulphide; 
Yperite; Schwefel – Lost; 5–Mustard; Mustard gas; Levistein 
Mustard; Yellow cross Mustard; 

However, persistent DNA damage due to unsuccessful 
repair might result in programmed cell death either by 
terminal differentiation or via apoptosis15. 

2.2 PARP Signaling
Poly [ADP-ribosyl]ation of cellular proteins in 

association with marked exhaustion of nicotine adenine 
dinucleotide [NAD+] and adenosine triphosphate [ATP] has 
been noticed after SM contact and it depends on SM-induced 
activation of poly [ADP-ribose] polymerases [PARPs]17. 
PARPs modulate SM induced cell death and thereby blister 
formation. PARP-1 and PARP-2 are activated by genotoxic 
stress in multicellular organisms. High SM absorption turns 
on PARP-1 with subsequent diminution of its substrate 
NAD+ and formation of [ADP-ribose] polymers18. PARP-1 
is a caspase-3 substrate in the early phase of apoptosis19 
and lysosomal proteases in necrosis20. Low NAD+ inhibits 
glucose consumption and lactate formation21,22. NAD+ 
resynthesis further exhaust intracellular ATP stores23,24. 
Low ATP levels may lead to necrotic cell death25,26. PARP 
inhibition does not prevent cell death, although in the early 
hours after injury a limited degree of cytoprotection can 
be observed27. However, moderate SM exposure activates 
PARP-1 with low impact on NAD+ and ATP levels27. Thus, 
the conserved intracellular energy level favors beginning 
of apoptosis6,28,29. The serious role of intracellular ATP is 
authenticated by the result that PARP inhibition can shift 
necrosis to apoptosis30. 

2.3 Apoptosis
Apoptosis is defined by histo-architectural changes 

of the cell nucleus, where the chromatin material 
condenses to form compact figures from which smaller 
granules of chromatin [apoptotic bodies] are formed31. 
Other features are compression of cytoplasm, cutback in 
the membrane potential of mitochondria, intracellular 

Figure 1. Diagrammatic representation of SM-induced 
genotoxic stress leading to cell death. 

2.  MeChANISM OF ACTION OF SUlFUR MUSTARD 
TOxICITy

2.1 DNA Damage
SM reacts with DNA by forming mono and bifunctional 

SM adducts6. N7 position of guanine is the preferred site for 
the production of these adducts, however, N1 position of 
adenine, N3 position of adenine and O6 position of guanine  
are also possible additionally6. O6- [2-ethylthioethyl] 
guanine is considered as a serious DNA lesion because 
human DNA repair machinery fails to eradicate the SM 
adduct at this position6 and may cause significant mutagenic 
effects due to replication. Moreover, cell fate is vastly reliant 
on the quantity of SM alkylate DNA. DNA alkylation leads 
to variety of cellular responses consist of cell cycle arrest, 
terminal differentiation, apoptosis/oncosis or necrosis14-

16. Genotoxic stress induced by SM stimulates DNA repair. 
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acidification, phosphatidyl serine exposure to cell surface, 
cell shrinking and membrane blebbing. The apoptotic 
machinery is motivated by the establishment of proteases 
known as caspases [cysteine-dependent, aspartate specific 
proteases]32. Two major pathways have been described 
to trigger apoptosis, namely the extrinsic pathway [death 
receptor pathway] and the intrinsic pathway [mitochondrial 
pathway] within the cell. Interestingly, both pathways seem 
to be involved in SM-induced apoptosis6. 

Alkylation and cross linking of intracellular DNA 
with SM, leading to DNA damage is well documented6,33. 
SM-induced DNA damage results in PARP activation 
and depletion of cellular NAD+ and AT at the site of SM-
induced skin injury, which results in necrotic cell death. 
Mild PARP activation does not disturb cellular energy 
levels and allows apoptotic cell death or recovery to occur 
34. Prelethal cell death reaction have been categorized 
into oncosis and apoptosis35. It has been reported that 
SM causes both oncotic (cellular swelling) and apoptotic 
[cellular shrinkage and nuclear condensation] type of pre-
lethal cell injury, demonstrating a dose and time-dependent 
increase in DNA damage depicted by deoxyribonucleotidyl 
transferase [TDT]-mediated dUTP-digoxigenin nick-end 
labeling [TUNEL] assay33,36 as shown in fig. 216.

2.4 Calcium Signaling and Calmodulin
Intracellular Ca++ is mainly stored in the endoplasmatic 

reticulum [ER]. Ca++ release from this store is important in 
various cellular signaling corridors. SM can cause major ER 
stress with changes in Ca++ homeostasis and induction of 
cell death e.g. apoptosis37. Interestingly, SM induces a rise 
of intracellular levels of free Ca++ in adult and neonatal 
keratinocytes38,39. More recently, the key role of calmodulin 
1 [CaM1] in SM induced apoptosis was demonstrated by 
Simbulan-Rosenthal40 et. al. The exact mechanism of SM-
induced rise in Ca++ is not clarified until today. 

2.5 Nitric Oxide Signaling and Oxidative Stress
Fascinatingly, reactive nitrogen species [RNS] and 

peroxynitrite [ONOO–] have just been projected as key 
mediators of SM-induced toxicity41,42. Nitric oxide [NO] 

is produced by nitrogen oxide synthases [NOSs], which 
convert the amino acid l-arginine into NO

• 
and l citrullin. 

There are three types of NOSs namely [a] endothelial NOS 
[eNOS], [b] neuronal or brain derived NOS [nNOS], and 
[c] inducible NOS [iNOS]. eNOS can be triggered through 
translocation from the plasma membrane, where it is linked 
with caveolin. SM induced eNOS triggering from the caveolin 
scaffolding was first stated by Bloch43, et al. Besides eNOS 
activation, Gao44, et al. had demonstrated an up regulation 
of iNOS after SM injury. In combination, it appears possible 
that SM induced increase in free intracellular Ca++ and 
CaM-regulation could lead to NOS activation. SM induces 
concentration and time-dependent formation of iNOS45 
and activation of eNOS16 due to translocation from plasma-
membrane. 

Oxidative stress has been proposed as a possible 
pathway for SM poisoning46,47. Glutathione is considered 
to play a crucial role in cellular and extracellular defense 
against alkylating agents, free radicals and oxidative stress48 
and is responsible for maintaining the thiol status of the 
cells. Reduction of the intra cellular GSH level decreases 
cellular resistance to oxidant insult49,50. Glutathione is an 
intracellular scavenger of SM10. Thus, SM may cause GSH 
depletion and enhances formation of reactive oxygen species 
[ROS]51,52. It is not clear whether SM initiates peroxidation 
by direct interaction with lipids. However impairment of 
cell’s natural protective system was proposed to be the 
cause for the peroxidation53. Cell death is thus proposed 
to be due to an accumulation of endogenous ROS (e.g. 
H2O2 accumulation resulting in hydroxyl and perferryl ion 
formation) leading to lipid peroxidation and irreversible 
membrane damage54. 

2.6 Inflammation
The histopathology of SM injured skin explained 

noticeable inflammatory reaction which point out 
the assembly or discharge of various vasoactive and 
chemoattractant mediators in the affected area16,55. Skin 
epidermocytes are the primary cells in contact with SM 
and are supposed to have a central role in the first phase 
of initiating toxic response. Several pathways have been 

Figure 2. (A) Photomicrograph showing hyperplasia of epidermal cells, pyknotic nuclei of basal cells [arrow] and edema of dermis 
along with mild inflammatory reaction and (B) TUNEL positive cells in epidermis of mice skin section [arrowhead] 3 days 
after SM exposure. 
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recognized to be concerned in the gene expression of 
proinflammatory mediators. There is an immediate release 
of IL-1, IL-6, IL-8, TNFα and GM-CSF after SM exposure16,56-

58. This cytokine pattern has strong chemotactic activity 
for neutrophils and macrophages. The NFκβ pathway and 
mitogen-activated protein kinases [MAPKs] are described 
to be substantially involved in the regulation of genes 
coding for inflammatory cytokines after SM injury59,60. 
More recently, the role of metalloproteinases, collagen 
degradation61,62, platelet activating factor63, and interaction 
of cytochrome P450 processes64,65 are being investigated 
relative to the mechanism of action of SM.

2.7 Toxicokinetics
 Mustards are very lipophilic therefore penetrates the 

epithelial tissues easily. The eye, respiratory tract and skin 
of unprotected persons will be most likely damaged after 
exposure to SM. 10–20% of total mustard that penetrates 
skin is fixed to the macromolecules and remaining 80–
90% is rapidly transported away by circulation66. The 
distribution of SM is quick with a long terminal half life 
[t1/2 = 5.56 min; t1/2 = 3.59 h]. The volume of distribution 
at steady state [Vdss] is 74.4 l. Whole body autographic 
studies with 35 S-labeled SM have shown that elevated 
radioactivity was detected in the nasal region, followed by 
the kidneys, liver, and intestines at all times studied after 
percutaneous or intravenous administration67. Two studies 
in rats revealed that conjugation with glutathione is more 
important than hydrolysis68,69. More recent investigations 
demonstrated that 60% of the dose is excreted in the 
24 h urine. Thiodiglycol sulphoxide, 1,1-sulphonylbis 
[2- S [N-acetylcysteinyl] ethane], and 1,1-sulphonylbis 
[2-[methylsulphinyl] - ethane] or 1-methylsulphinyl-2- [2 
[methylthio] ethylsulphonyl] ethane are the most prevalent 
metabolites70,71. 

2.8 Pathogenesis of Blisters
The primary cutaneous cell population targeted by SM 

is the basal cell of epidermis10,16,55,72. In animal model studies, 
the development of an apparent initial nuclear pathologic 
condition of basal cells of the stratum germinativum was 

followed by progressive cytoplasmic changes, leading to 
the eventual death of affected basal cells. Microblisters are 
observed to arise from focal areas of epidermal-dermal 
separation [fig. 3 (a), (b) ] in areas of widespread basal cell 
pyknos is [Fig. 2(a)], 24 to 48 hours after SM exposure, as 
seen by light microscopy16. This separation is dependent on 
the loss of integrity of basal cells and anchoring filaments73. 
Progressive changes reported in basal epithelial cells include 
formation of perinuclear or paranuclear vacuoles [Fig. 3 
(a)], a decrease in nuclear staining intensity, cytoplasmic 
swelling, relocation of chromatin to the periphery of the 
nucleus, loss of chromatin, and pyknosis16,74. These changes 
are followed or accompanied by necrosis, vacuolization, or 
hydropic degeneration of the cytoplasm, while the extent of 
nuclear damage is dose and time related16,54. However, the 
pathogenesis of micro blisters is not fully understood.

Petrali75, et. al. found indications that proteins of 
extracellular matrices of the basement membrane zone 
are affected during the development of SM induced skin 
pathology in hairless guinea pigs and postulated that 
they may contribute to the formation of micro blisters. 
Immunohistochemical staining for bullous pemphigoid 
antigen, a noncollagenous protein shared between basal 
cell hemidesmosomes and the lamina lucida, revealed a 
diminishing of bullous pemphigoid antigen reactivity at 
early times and subsequent loss of antigenicity at later 
time periods after an 8 minute SM vapor exposure (tissues 
were harvested at selected post exposure time periods up 
to 24 h). Laminin, the major glycoprotein of the lamina 
lucida, showed scanty immunolocalization at the later 
time periods, conforming to the structurally altered lamina 
lucida at micro blister lesion sites. The reactivity of Type IV 
collagen, a ubiquitous protein assigned to the lamina densa 
of basement membranes, was unaltered to specific antisera 
throughout prevesication and vesication time periods. 
The influence of these altered macromolecules on repair 
mechanisms following SM toxicity is not known.

IL-6 has been recognized as a way for inflammatory 
cell recruitment and its activation at the site of SM-induced 
skin injury16,55,76. A time and dose-dependent increase in 
the expression of IL-6 in early stages followed by a sharp 

Figure 3. (A)1 h showing ballooning of epidermal cells, acanthosis in epidermis [arrow], oedema of dermis and a few transmigrated 
neutrophils and (B) 6 h showing ballooning of epidermal cells, dermoepidermal seperation [arrow head] and infiltration 
of inflammatory cells in dermis.
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decrease in later stages in IL-6 expression in the mouse 
skin16, mouse ear77, weanling pigskin58 and hairless mouse 
skin78 after SM exposure that are consistent findings. 
Several in vitro and in vivo studies have suggested the 
role of inducible nitric oxide synthase [iNOS] induced NO 
synthesis, which is mainly produced by neutrophils and 
leukocytes44,79,80. A time-dependent expression of eNOS 
in endothelial cells of newly formed blood vessels and in 
granulation tissue during healing process of SM-induced 
skin injury, supporting the eNOS-induced NO synthesis has 
also been reported by us16. Further, angiogenesis involves 
complex sequential steps such as degradation of basement 
membrane by proteases, proliferation and migration/
invasion of endothelial cell, formation of capillary tubes 
and survival of newly formed blood vessels16,81. NO, is a 
prerequisite for the endothelial cell to enter into angiogenic 
cascade and increased NO production correlates positively 
with increased vascular density16,82. NO promotes 
angiogenesis, migration and proliferation of fibroblasts, 
epithelial cells, endothelial cells, and keratinocytes during 
the wound healing process31. This suggests that eNOS may 
play pivotal roles in all the events relating to wound healing, 
and the time dependent expressions of eNOS may be used 
possibly as a new marker for the age determination and in 
evaluating angiogenic activity for pharmaceutical screening 
of drug against SM-induced skin lesions. 

Growth factors play a multitudinous role in wound 
repair process. Inflammatory stimuli triggers p38 MAP 
kinase which results in the release of TGF-α family ligands 
and activates the epidermal growth factor [EGF] receptor 
signaling, leading to enhanced keratinocyte proliferation, 
mitogenic to fibroblast proliferation and granulation tissue 
formation31,83. On the other hand, depletion of p38a MAP 
kinase activity suppresses EGF receptor signaling and 
downstream Erk MAP kinase signaling, as well as autocrine 
EGf-decreased proliferation. Our group has also reported a 
time-dependent correlation between proliferations of basal 
cells and TGF-α expressions by epidermal cells along with 
granulation tissue formation in SM-induced skin injury in 
mice. Fibroblasts and neovascularization strengthen the 
wound by increasing collagen and mucopolysaccharide 
production in the proliferative phase of the wound 
healing16,84. bFGF modulates fibroblast proliferation, its 
migration into damaged tissue, stimulates angiogenesis 
and affects cell differentiation16,85. We observed a time-
dependent increase in bFGF expression, showing a 
significant correlation with fibroblast proliferation and 
tissue collagen synthesis in SM-exposed mice skin. 

2.9 Models Systems for Screening SM Toxicity
Many in vivo studies have focused on euthymic 

hairless guinea pig86-88 guinea pig, weanling pig (showing 
skin lesions similar to humans), rabbit, mouse ear vesicant 
model89,90 or various mouse species (nude mice, euthymic 
hairless mouse etc.) as reviewed by Gerecke91, et. al. as 
useful animal models for evaluating efficacy of various 
antidotes against SM-induced skin toxicity. But there are 
many variables that influence the differential severity of 

pathogenesis of SM induced lesions such as dose of SM, 
physical and chemical nature of diluents and duration of 
SM exposure92. Vijayaraghavan93, et. al., while screening 
various antidotes against SM toxicity, observed that SM was 
more toxic through percutaneous route compared to oral 
and subcutaneous routes. Our previous studies described 
the in vivo protection against systemic toxicity due to 
percutaneous exposure of SM diluted in PEG-30052,53,93-97, 
DMSO93 and acetone98.

Animal models for evaluation of antidotes against SM-
induced dermatotoxicity include weanling pig, hairless 
guinea pig, rabbit or hairless mouse33,99-102. However, 
hairless mouse models in which hr gene expression has been 
reduced or eliminated display phenotypes of hair loss and 
hyperproliferation of skin and formation of dermal cyst103. 
Additionally, lack of polyclonal and monoclonal antibodies 
and lack of probes and primers to DNA and RNA sequences 
in weanling pig and guinea pig limits the usefulness of these 
animals in the study of the pathophysiology of SM-induced 
skin lesions104. The standard mouse ear animal model 
for studying pathophysiology of SM-induced skin lesions 
have been shown to have altered reaction to injury with 
delayed inflammatory changes compared to mouse skin78. 
Animal models exposed with 2-chloroethyl ethyl sulphide 
[CEES; half mustard, used to produce SM like skin lesions] 
provides the initial steps for evaluation of therapies that 
need to be repeated using SM due to differences in the 
metabolism and the mechanism of action105,106. Thus, use 
of CEES as a stimulant of SM for antidote evaluation may 
not be appropriate. Recently, Lomash10, et al. has designed 
and reported a mouse model for studying SM induced skin 
lesions. It has been suggested that Healing is modified by 
both systemic and local host factors31. Thus, damage to liver, 
kidney and spleen of test model on exposure to SM diluted 
in PEG-300 or DMSO will impair systemic host factors, 
which may Retard normal wound healing and will interfere 
in the wound-healing Process. On the other hand, there was 
no noticeable systemic injury observed in mice exposed to 
SM diluted in acetone, thus diminishing the systemic host 
factors that influence wound healing. Thus, the developed 
mouse model shall be resourceful, reliable, economical and 
suitable model for studying SM-induced skin lesions10.  

2.10 Target Organs of SM
Sulfur mustard is a blister agent (vesicant) that causes 

severe, delayed burns to (a) the eyes causing irritation, 
itching lacrimation, burning sensation, conjunctivitis 
and photophobia, marked hyperemia, perforation in the 
anterior chamber, corneal opacities, corneal ulceration, 
delayed recurrent keratitis, chronic conjunctivitis and 
keratoplasty7,51,54,107, (b) the skin resulting in the formation 
of blisters which further turns to ulcers that heal very 
slowly and tend to become infected. If they do not heal, deep 
marginal pigmentation may develop afterwards7,16,54,107 
and (c) Inhaled SM injures the respiratory epithelium 
from the nasopharynx to the bronchioles leading to the 
symptoms like cough, chest pressure, sinus pain, and 
sore throat hoarseness have been observed on immediate 



12

Pant, et al.: DEf. LIfE SCI. J., VOL. 1, NO. 1, JUNE 2016, DOI : 10.14429/dlsj.1.10089

exposure107,108. Death after SM exposure generally occurs 
due to bronchopneumonia and secondary infections. Mice 
exposed to SM vapors showed sensory irritation during 
exposure and airway obstruction later109. SM damages cells 
within minutes of contact; however, the onset of symptoms 
is delayed until hours after exposure. Outsized contact 
to sulfur mustard may be lethal. SM is also damages the 
cells within the bone marrow thereby affecting the body’s 
immune system. Finally, SM also affects a part of the nervous 
system and causes “cholinergic toxicity”, evidenced by 
excessive saliva, tears and urine; gastrointestinal cramping 
and diarrhea; vomiting and meiosis. SM has been used as a 
chemical warfare agent to cause delayed casualties107. 

2.11 Current Treatment for SM Toxicity 
Since, the medical management of SM exposure is not 

satisfactory, a considerable effort has been expanded in 
the development and evaluation of protective clothing and 
equipments110. Following exposure, rapid decontamination 
is essential. Ocular exposure will require rapid removal of 
the agent from the eyes by irrigating with water vapor. The 
use of laser debridement of burns has shown to increase 
the rate of burn resolution in animal models and may, 
therefore, be beneficial in SM induced skin injuries111 
Because no antidotes are available till date for SM toxicity 
medical management rely on prevention, decontamination 
and palliative treatment of signs and symptoms112. 

Drugs that were used for therapeutic or preventive 
measures against SM toxicity were anti-inflammatory 
drugs [e.g. Fluphenazine dihydrochloride, Indomethacin, 
Olvanil, Hydrocortisone etc.]; scavenger drugs [eg. 
Mercatopyridine-1-oxide, 6-Methyl-2- Mercatopyridine-
1-oxide, 4- Methyl-2- Mercatopyridine-1-oxide, Hydrogen 
peroxide gel 3%, Dimercaprol]; Protease inhibitor [e.g. 
1-[40-Aminophenyl]-3-[4-chlorophenyl] urea, N-[O-P]-
L-Ala-benzyester hydrate]; PARP inhibitor [e.g. 3-[4-
Bromophenyl]ureidobenzaide, Benzoylene urea] which 
were reviewed by Smith113. Hydrophilic formulation of 
CC2 [N, N’-dichloro-bis [2,4,6-trichlorophenyl] urea] 
was proved to be a favorable and preferred personal 
decontaminant by Vijayaraghavan114, et al. further, this 
formulation was fortified with aloe vera and betain for 
enhancing its wound healing efficacy without affecting its 
stability and decontamination activity127. Polyurethane 
sponges containing detoxification additives are currently 
being developed and evaluated for decontamination/ 
detoxification116. Amifostine, and its analogue DRDE-07 
have shown significant protection against SM toxicity95,97,117. 
Some compounds showed good activity in vitro like 
L-nitroarginine methyl ester, diisopropyleglutathion 
ester etc118-120. but it’s in vivo efficacy is questionable 
or very weak. The protective effect of flavonoids121 and 
various antioxidants like trolox, quercetin and GSH52 on 
the SM induced toxicity by percutaneous and inhalation 
routes have been investigated with promising results but 
require further evaluation. Wound healing is a biological 
process triggered by tissue injury and directed towards 
the restoration of tissue continuity and its function. The 

early phase of healing process is inflammation followed 
by fibroplasia and re-epithelialization and finally tissue 
remodeling31. These phases overlap and their separation 
is arbitrary. In SM injury to human skin, recognizable skin 
pathology does not usually occur for several hours to a day 
after exposure91. Oral pretreatment with drugs against SM 
has been studied in experimental models for accessing 
their protective efficacy9,98. 

It was a common belief that the stronger bactericidal 
effect of an antiseptic agent has more deleterious effect on 
living tissue, and earlier studies have shown impaired wound 
healing with the use of iodine122,123. Contradictorily, Mayer124 
showed that PVP-I ointment when used in conjunction 
with the newer gel-type occlusive dressings enhances 
the healing process. Povidone iodine has been reported 
to enhance angiogenesis and is a potent microbicidal125. 
A. vera is another important ingredient, which is widely 
used for its healing, soothing and moisturizing qualities. A. 
vera augments re-epithelialization and fibroplasia, thereby 
increasing the healing rate of mechanical wounds126. 
Topical application of Aloe vera gel may be beneficial for 
protecting the SM-induced skin lesions98. Lomash55, et al. 
has reported a formulation DRDE/WH-02 [consisting of 
PVP-I, A. vera gel and betaine] to be efficacious in showing 
increased intensity of re-epithelialization, fibroplasia 
and angiogenesis in SM-induced skin lesions. Moore127 
suggested that the delivery of iodine in the chronic wound 
induces influx of macrophages and T helper cells, which 
are considered to play a positive role in modulating wound 
healing. The increased influx of tissue leukocytosis by 
DRDE/WH-02 in mice model have resulted in early removal 
of tissue debris at faster rate, ultimately paving way for the 
initiation of reparative process. 
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