A Comparative Weblink Analysis among Top Indian, Asian and World universities

Samir Kumar Jalal

Birla Institute of Technology, Mesra, Ranchi - 835 215 E-mail: samirkumar@bitmesra.ac.in

ABSTRACT

The article investigates the relationship among top ten world universities (TTWU), top ten Asian universities (TTAU) and top ten Indian universities (TTIU) based on the exploratory study of weblink analysis. Inlinks and outlinks analysis try to explore the relationship among these universities. The findings suggest that although TTIU are generating 3.71 % outlinks to TTWU but receives only 0.67 % inlinks from them. On the other hand, inlinks and outlinks to TTAU are far less than TTWU. An interesting result reflects that the percentage of inlinks and self-links for top ten Indian (30.51% and 69.49%) and Asian universities (31.45 % and 68.55 %) are less than top ten world universities (55.25% and 44.75%).

Keywords: Weblink analysis, co-link analysis, Indian university, Asian universities

1. INTRODUCTION

It is believed that the study of link analysis helps the possibility of exploring useful information. After studying the references of an article, one can find many useful links or concepts for building up the document. So, there is a link or association among the similar subjects. It's true for all the subjects in the universe. The same analogy may be applied to websites. With this belief, Google used the link-based algorithm for identifying the best webpage. The research on weblink analysis started in 1995-96 including computer science¹ and mathematical structure and complexity analysis²; information science³. Larson⁴ made an exploratory analysis of 'Bibliometrics for the world wide web'. Almind & Ingwersen⁵ coined the term 'webometrics', which is the emerging trend in information science research in today, in which weblink analysis is the thrust area of study.

2. LITERATURE REVIEW

The studies on hyperlink analysis have extensively undergone by applying existing bibliometric techniques to the web^{4,6}. There is a controversy between hyperlinks and citations. Generally, citations are applied in conventional print documents, whereas hyperlinks are applied in a web document.

Egghe⁷ rightly indicates that hyperlinks could be bi-directional while references are uni-directional.

Brin & Page⁸ developed the concept of PageRank at Stanford University as part of a research project basically to develop new search engine powered by PageRank and have an added advantages over others. Later, they developed an excellent search engines called Google, the most admired and used search engines in the world based on PageRank algorithm. Stuart⁹ et al. investigated the potential of weblinks to act as an indicator of collaboration through detailed classification of 2600 links from universities to government, commercial and other domains. The result showed that the majority of weblinks on university webpages did not reflect the collaboration between the webpage owner and the target webpage owner. Still, significant number of links reflects the collaborative relationships.

Ranking of academic institutions especially universities is of prime attraction in the arena of globalisation. Therefore, university authority may give proper care for the upliftment of their existing ranking not only at the national level but also at the global level. Few studies on ranking of Indian universities¹⁰ and Asian countries¹¹, African countries, Australian countries, European countries were conducted so far. Besides, national as well as global ranking system has emerged and few notable ranking systems are: Ranking Web of World Universities (RWWU), Shanghai Ranking, Times Higher Education (THE), 4 International and College Universities (4ICU), etc. Weblink analysis specifically addresses the collaborative relationship through co-link analysis. Co-link may be of two types: Co-inlinks and co-outlink. It would be an interesting to know how far the Indian universities have established collaborative relationship in academic, teaching and research, and R&D works with top level world universities as well as with the top level Asian universities.

Weblink analysis is the focus of study. The importance of weblinks is duly acknowledged by WWW' founder Berners Lee¹² Larson⁴ is one of the pioneers to investigate the link structures in academic web spaces. He used Altavista in a cocitation analysis for earth science related websites and could produce clustering of websites that had topical similarities. Henzinger¹³ reviewed link structures analyses from computer science perspective, showing how links could be used by search engine in ranking algorithms. Bjorneborn¹⁴ has contributed the idea of link structure in his PhD thesis which described the link structure of the academic institutions of UK. Besides, a series of link terminology were given. Harries¹⁵, et al. expressed that hyperlinks between academic websites can be used to map disciplinary structures and identified evidence of connections between disciplines. Links within a discipline were found to be a different in character to links between pages in different disciplines.

Earlier link analysis had concentrated on developing metrics to measure the impact of websites. Ingwersen⁶ introduced the concept of web impact factor (WIF) to measure the impact of a web site using various types of link counts. Among these, the external WIF was highly used. Smith¹⁶ as well as Björneborn & Ingwersen¹⁷ found that the external inlink count is a better measure than the total inlink count to measure the visibility of a website.

University ranking at the local, regional as well as global level is prime attraction to everyone. Aguillo¹⁸, *et al.* compared popular university ranking systems using a set of similarity measures. The findings showed that there is reasonable similarity between the ranking methodologies.

Hemerks & Van Den Besselaar¹⁹ in their study showed that hyperlinks are the most commonly used alternatives to study websites and structures on the web. They analysed and compared hyperlink networks using a variety of linking units on the different levels of aggregation and specificity. The inter-university web connectivity phenomenon had been studied for African countries²⁰ and for Kenyan universities²¹. They used link analysis approach to compare Kenyan and South African universities based on several web based indicators such as number of web-pages, number of inlinks and outlinks. Li²², *et al.* had studied national and international university even at the departmental website interlinking. As departments are subjectoriented, departmental interlinking pattern may be illustrated. Three departments have been taken up like physics, chemistry, and biology in Australia, Canada and UK to study link pattern differences and compared each set of patterns.

Vaughan & You²³ added a new dimension in webometric research by introducing the concept 'word co-occurances on webpages' as a measure of the relatedness of organisation. An experiment was made in a group of telecommunication industry and found that web co-word analysis could potentially be useful for web co-link analysis.

Therefore, the crux of the study aimed at to focus on finding out the hyperlink relationship among top ten universities within themselves as well as with Asian and Indian universities.

3. METHODOLOGY

The selection of data set for our study includes TTIU, TTAU and TTWU based on Web Ranking of World Universities (RWWU) January 2011²⁴ by Cybermetrics Lab, Spain. The names of the universities along with their corresponding codes and domain names are mentioned in Table 1.

Henceforth, the codes may be used to represent these universities in the following tables for optimum use of space. The webpage for all the universities can be calculated using domain: iisc.ernet.in.

The total inlinks for a particular university (say, Indian Institute of Science, Bangalore having domain name iisc.ernet.in) are determined using the query as: linkdomain:iisc.ernet.in – domain: iisc.ernet.in. The same way the inlinks for all the top Indian universities as well as top world universities are retrieved through Yahoo! search engine dated 16-18 February 2011. After collection of data, a series of measures have been applied to know and to find out the nature and degree of hyperlink relationship.

4. RESEARCH QUESTIONS

For simplicity, it is assumed that A, B, and C are three different websites having valid domain name. Among these, if two websites A and B are receiving links from third website C then we can call site A and B are co-linked. The analysis of the websites A & B may be termed as co-inlink analysis. On the other hand, if two sites A & B are giving links to third site C then site A & B are called co-linking. The analysis of websites A & B may be called as co-outlink analysis. The sum of other co-inlink analysis and co-outlink analysis may be termed as co-link analysis. On the basis of the fundamental concept, following few research questions may be raised to achieve the objectives and purpose of the study:

Group	University Name	Code	Domain
Indian	IISc Bangalore	IISc	iisc.ernet.in
universities	IIT Kanpur	ШТК	iitk.ac.in
	IIT Bombay	IITB	iitb.ac.in
	IIT Madras	IITM	iitm.ac.in
	University of Delhi	DU	du.ac.in
	Tata Institute of Fundamental Research	TIFR	tifr.res.in
	IIT Delhi	IITD	du.ac.in
	IIT Kharagpur	IITKGP	iitkgp.ernet.in
	NIT Rourkela	NITR	nitrkl.ac.in
	IIIT Hyderabad	IIITH	iiit.ac.in
World	Massachusetts Institute of Technology	MIT	mit.edu
universities	Harvard University	HU	harvard.edu
	Stanford University	SU	stanford.edu
	University of California Barkley	UCB	berkeley.edu
	Cornell University	CU	cornell.edu
	University of Wisconsin Madison	WISC	wisc.edu
	University of Michigan	UM	umich.edu
	University of Minnesota	UMN	umn.edu
	University of Washington	UW	washington.edu
	University of Pennsylvania	UP	upenn.edu
Asian	National Taiwan University	NTU	ntu.edu.tw
universities	University of Tokyo	UT	u-tokyo.ac.jp
	Kyoto University	KU	kyoto-u.ac.jp
	National Cheng Kung University	NCKU	ncku.edu.tw
	National Chiao Tung University	NCTU	nctu.edu.tw
	National University of Singapore	NUS	nus.edu.sg
	National Central University	NCU	ncu.edu.tw
	University of Hong Kong	UHK	hku.hk
	Osaka University	OU	osaka-u.ac.jp
	Keio University	KEU	keio.ac.jp

Table 1. Top ten Indian, Asian, and World universities

Source: http://www.webometrics.info.

- Is there any relationship between top ranking Indian universities and top ranking world universities with respect to inlinks and outlinks?
- Is there any web inter-connectivity relationship between top ranking Asian universities and top ranking Indian universities?
- How is the link relationship among top ranking Indian universities with top ranking global universities in academic web space?

Table	2.	Query	syntaxes
-------	----	-------	----------

	· · · ·							
Indicators Query								
Co-inlinks	linkdomain:A AND linkdomain:B NOT (domain:A OR domain:B)							
Webpage	domain:A							
Inlink	linkdomain:A –domain:A							
Selflink	linkdomain:A domain:A							
Inlinks	linkdomain:xxx.yyy.zz AND domain:aaa.bbb. cc, where 'xxx' is producing the links and 'aaa' is receiving the links							
Outlinks	linkdomain:xxx.yyy.zz AND domain:aaa.bbb. cc, where 'xxx' is receiving the links and 'aaa' is producing the links							

 How to measure the degree of collaboration between

(a) TTIU, and TTAU and

(b) TTIU, and TTWU?

5. RESULTS

To search for answers to the above research questions, following facets have been studied and with followingfindings:

5.1 Distribution of Inlinks Received by TTAU from TTIU

Table 3 has shown the number of outlinks to each of the TTWU. It is found that IISc, Bangalore being the number one university is generating maximum outlinks (1916) followed by IIT, Bombay (918) to TTWU as compared to other TTIU.

Table 3 shows that University of Wisconcine Madison (WISC) being the 6th world topper is producing maximum outlinks to Indian no. 1 university, i.e., IISc, Bangalore. Here, the point to be noted that MIT, being the World no.1 University, is producing highest number of outlinks to TTIU as compared other TTWU.

Table 3. Distribution of	outlinks from top ten Indian ur	niversities to top ten World universities

	МІТ	HU	SU	UCB	CU	WISC	UM	UMN	UW	UP	Total
IISc	183	451	155	210	137	383	122	117	97	61	1916
IITK	52	25	64	59	23	20	11	13	24	9	300
IITB	188	37	158	176	78	73	47	51	57	53	918
IITM	45	4	20	22	7	133	11	7	22	9	280
DU	199	16	57	22	12	16	26	9	7	62	426
TIFR	313	96	84	44	48	32	26	17	34	18	712
IITD	4	4	40	11	1	3	3	7	3	6	82
IITKGP	5	2	3	0	1	0	1	0	1	3	16
NITR	0	2	0	2	0	1	2	0	1	0	8
IIITH	21	6	19	8	5	2	3	2	12	9	87
Total	1010	643	600	554	312	663	252	223	258	230	4745

Table 4. Distribution of outlinks from top ten Indian universities to top ten Asian universities

	NTU	UT	KU	NCKU	NCTU	NUS	NCU	UHK	OU	KEU	Total
llSc	3	16	10	5	2	29	0	9	3	4	81
IITK	2	3	1	0	2	7	0	5	0	0	20
IITB	11	8	6	3	5	33	1	4	2	13	86
IITM	3	2	0	3	1	10	0	1	4	2	26
DU	0	2	2	0	0	0	0	2	0	0	6
TIFR	8	9	20	0	1	4	2	0	3	3	50
IITD	0	0	0	0	0	1	1	0	0	0	2
IITKGP	0	0	0	0	0	1	0	0	0	0	1
NITR	0	0	0	0	0	0	0	0	0	0	0
IIITH	1	6	1	0	0	2	4	3	0	0	17
Total	28	46	40	11	11	87	8	24	12	22	289

5.2 Distribution of Outlinks from TTIU to TTAU

Table 4 deals with TTAU in which it clearly identified that National University of Singapore (NUS) is providing highest number of outlinks (30.10 %) to TTIU. On the other hand, IIT Bombay is receiving maximum number of outlinks from TTAU followed by IISc Bangalore.

The total outlinks is being calculated with the

help of commercial search engine Bing, i.e., bing.com using special webometric keyword linkfromdomain (e.g. linkfromdomain: X, where X represents university's domain name e.g. iisc.ernet.in. Outlinks to TTWU is referred in Table 5 and percentage of outlinks for each Indian university is calculated over total outlinks.

The Table 5 shows that among top ten Indian universities, IISc, Bangalore (iisc.ernet.in) is proving highest outlinks (1.50 %) to TTWU.

Table 5. Distribution	of individual	and total	outlinks to	top ter	Norld universities

S. No.	Domain Name	Outlinks to TTWU	Webpage	Total outlinks	Percentage
1.	iisc.ernet.in	1916	334000	32800	1.50
2.	iitk.ac.in	300	145000	16700	0.23
3.	iitb.ac.in	918	267000	19000	0.72
4.	iitm.ac.in	280	217000	21200	0.22
5.	du.ac.in	426	31500	10100	0.33
6.	tifr.res.in	712	53500	17900	0.56
7.	iitd.ac.in	82	25200	6970	0.06
8.	iitkgp.ac.in	16	19100	612	0.01
9.	nitrkl.ac.in	8	24100	108	0.01
10.	iiit.ac.in	87	90700	2410	0.07
Total		4745	1207100	127800	3.71

	МІТ	HU	SU	UCB	CU	WISC	UM	UMN	UW	UP	Total
llSc	27	25	32	21	17	71	14	13	8	23	251
IITK	38	7	41	25	17	38	28	13	5	18	230
IITB	24	8	48	27	21	170	19	12	9	13	351
IITM	25	10	21	14	5	23	14	10	3	9	134
DU	1	1	6	0	0	1	1	0	1	5	16
TIFR	16	8	35	16	20	6	3	8	5	19	136
IITD	3	1	9	5	4	7	1	8	3	6	47
IITKGP	3	0	15	12	1	3	5	5	5	2	51
NITR	0	0	1	0	3	0	0	0	0	0	4
IIITH	3	1	6	4	2	441	1	8	5	4	475
Total	140	61	214	124	90	760	86	77	44	99	1695
	-						-				

Table 6. Distribution of inlinks received by total outlinks to top ten World universities

Source: Yahoo! dated 17 February 2011

Table 7. Distribution of inlinks received by top ten Indian universities to top ten Asian universities

	NTU	UT	KU	NCKU	NCTU	NUS	NCU	UHK	OU	KEU	Total
llSc	2	13	2	1	1	18	3	2	3	1	46
IITK	10	14	4	2	3	12	0	4	3	7	59
IITB	4	1	0	2	0	20	0	2	0	1	30
IITM	1	5	1	2	1	24	1	1	1	1	38
DU	1	2	2	0	0	1	0	2	0	1	9
TIFR	3	34	22	1	13	5	2	0	6	0	86
IITD	0	0	0	0	2	2	0	0	3	1	8
IITKGP	1	1	0	0	0	1	0	0	0	0	3
NITR	0	0	0	0	0	1	0	0	0	0	1
IIITH	2	1	6	0	0	3	0	3	4	0	19
Total	24	71	37	8	20	87	6	14	20	12	299

Source: Yahoo! dated 16 February 2011

5.3 Distribution of Inlinks Received by TTIU from TTWU

Table 6 has explained total number of inlinks received from each of the TTWU. It is found that IIIT Hyderabad being the 10th rank of Indian university achieved the credit of receiving the highest number of inlinks (475) followed by IIT Bombay (351) from TTWU as compared to other TTIU.

5.4 Distribution of Inlinks Received by TTIU from TTAU

Table 7 explains the distribution of inlinks received by TTIU from TTAU. Tata Institute of Fundamental Research (TIFR) received highest number of inlinks from TTAU, especially from University of Tokyo.

It is clear from Table 7 that National University of Singapore (NUS) is producing highest links to TTIU followed by University of Tokyo (UT). Table

Table 8. Distribution of total inlinks to top ten World universities
--

S. No.	Domain name	Inlinks from TTWU	Self-links	Total inlinks	Inlinks from TTWU (%)
1.	iisc.ernet.in	251	166000	32400	0.10
2.	iitk.ac.in	230	63300	31800	0.09
3.	iitb.ac.in	351	151000	48900	0.14
4.	iitm.ac.in	134	74200	37700	0.05
5.	du.ac.in	16	14100	22600	0.01
6.	tifr.res.in	136	28300	22600	0.05
7.	iitd.ac.in	47	10700	27800	0.02
8.	iitkgp.ac.in	51	11300	10400	0.02
9.	nitrkl.ac.in	4	13000	5900	0.00
10.	iiit.ac.in	475	46700	13900	0.19
Total		1695	578600	254000	0.67

shows the distribution of top total inlinks received anywhere in the world and the percentage of inlinks received from top ten world universities. Total inlinks is being calculated using linkdomain: X-domain: Y (e.g. X= iisc.ernet.in, which is the link receiving domain and Y is the link producing domain). Inlinks from TTWU as have been shown in the Table 3 is referred in Table 6 and based on the data, percentage of inlinks for each Indian university is calculated over total inlinks.

It implies that only less than one percentage inlinks received from TTWU. The link analysis of each university may be done through tabular as well as graphical presentation. But for convenience, only first rank university of each set of data under study have considered for analysis.

5.5 Link Analysis of Particular University

5.5.1 Indian Institute of Science (IISc), Bangalore

The IISc Bangalore is having the highest number of outlinks (1916). Figure 1 shows the distribution

of outlinks and inlinks among the top ten world universities in terms of percentage. It shows that outlinks from IISc Bangalore to Harvard University (23.54 %) and inlinks from IISc to University of Wisconsin Madison (28.29%) were highest.

5.5.2 Massachusetts Institute of Technology (MIT)

The MIT had only 68 outlinks to all TTIU in which highest outlinks to IISc, Bangalore (41.18 %) followed by IIT Kanpur (25 %) and equal number of outlinks to IIT Bombay (11.76 %) and IIT Madras (11.76%). But, MIT receives 1005 number of inlinks from TTIU in which TTIFR, Mumbai gives highest inlinks (33.13 %) followed by IIT Bombay (19 %).

Figure 2 reflects that MIT generates highest number of outlinks (28) to IISc Bangalore and receives highest number of inliks (333) from TIFR Mumbai.

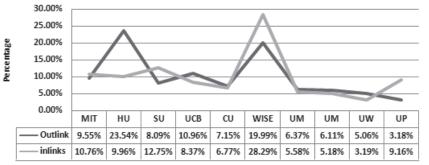


Figure 1. Distribution of inlinks and outlinks for IISc Bangalore.

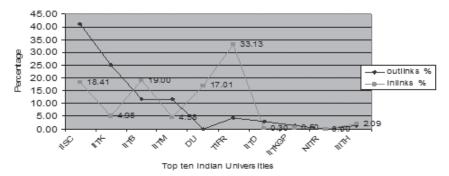


Figure 2. Distribution of inlinks and outlinks for Massachusetts Institute of Technology.

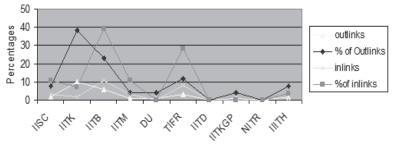


Figure 3. Distribution of inlinks and outlinks for National Taiwan University.

5.5.3 National Taiwan University

According to Ranking Web of World Universities (www.webometrics.info), National Taiwan University is given the credit of being rank no. 1 university among the Asian countries. Figure 3 shows the distribution of inlinks and outlinks exclusively from and to top ten Indian universities respectively.

Although it seems a very high percentage of outlinks and inlinks, the absolute figure is very pathetic, which is been reflected through the lower line in the Figure 3. The above figure shows that National Taiwan University generates highest number of outlinks (10) to IIT Kanpur and receives highest number of inlinks (11) from IIT Bombay.

5.6 Co-inlink Matrix for the TTIU

Co-inlink analysis is one of the important techniques for weblink analysis. The co-inlinks between two websites (say IISc, Bangalore and IIT, Kanpur) can be determined using the query syntax as: linkdomain:iisc.ernet.in AND linkdomain:iitk.ac.in. The matrix formed for TTIU using above query submitted in Yahoo! search engine is mentioned in Table 9.

Table 10 expresses the co-link matrix for the TTIU where both inlinks and outlinks have been shown. The boolean query syntax: linkdomain: X AND domain:Y, where X is the receiving links and Y is generating links.

5.7 Similarity Measure using Cosine Technique

One important technique is the application of cosine method. In webometric study, co-link matrix is formed using the query, linkdomain: university-A + site:university-B. The cosine technique can be applied to the whole set of data as retrieved using the above query. In order to build the map, an asymmetrical matrix can be used between the links of all accredited Indian universities. The cosine can be used to calculate the similarity among the websites.

The formula is: $Sin(S_i, S_j) = \frac{\sum e_i e_j}{\sqrt{\sum (e_i)^2 \sum (e_j)^2}}$

Table 9. Co-link matrix for top ten Indian universities (n	i=10)

S. No.	Domain	llSc	ІІТК	IITB	ШТМ	DU	TIFR	IITD	IITKGP	NITR	IIITH	Total
1.	llSc	-	3330	3180	3290	712	2140	1890	1160	380	688	16770
2.	ІІТК		-	8980	8040	879	806	6120	2110	347	336	27618
3.	IITB			-	8350	962	2220	6580	2350	430	442	21334
4.	IITM				-	1040	1100	6270	2740	480	884	12514
5.	DU					-	453	556	455	197	76	1737
6.	TIFR						-	276	177	99	618	1170
7.	IITD							-	1770	369	108	2247
8.	IITKGP								-	138	81	219
9.	NITR									-	62	62
10.	IIITH										-	-
Total												83671

Table 10.	Co-link matrix	for top ten	Indian Un	iversities (TTI	J, where n=10)
					<i>b</i> , m iloro ii io <i>j</i>

S. No.	Domain	llSc	ІІТК	IITB	ІІТМ	DU	TIFR	IITD	IITKGP	NITR	IIITH	Total
1.	IISc	-	106	235	154	2	78	106	68	2	12	763
2.	ΙΙΤΚ	103	-	252	167	2	20	50	127	3	12	736
3.	IITB	129	108	-	263	2	46	49	53	2	17	669
4.	IITM	128	124	191	-	154	14	46	58	3	45	763
5.	DU	28	7	7	1	-	4	9	0	0	2	58
6.	TIFR	45	33	88	10	2	-	5	2	0	4	189
7.	IITD	188	126	279	242	1	6	-	58	1	4	905
8.	IITKGP	74	66	84	457	0	2	18	-	0	3	704
9.	NITR	42	1	7	0	0	2	9	1	-	0	62
10.	IIITH	1	1	11	30	0	3	4	1	0	-	51
Total		738	572	1154	1324	163	175	296	368	11	99	4900

The matrix can be turned to distances and multidimensional scaling (MDS) map can be formed. Then map may be plotted with SPSS and finally it will be displayed with Ucinet. Cosine value for the group of TTIUs may be calculated using the help of above co-link matrix.

$$=\frac{3341536}{\sqrt{4246676\times3513766}}=\frac{33415363}{3862877.9}=0.8650$$

Therefore, it is found that for the case of top level Indian universities, the cosine value is 0.8650, which implies that there is a strong similarity in hyperlink pattern among TTIU.

5.8 Key Indicators

The key webometric indicators are mentioned in Table 11. The impact of website can be measured using some metrics as:

5.8.1 Web Impact Factor (WIF)

The web impact factor, which may be an indicator for measuring the impact of website is accepted by many scholars although there are many controversies and regarding the acceptance of the result. The

WIF can be calculated as: WIF =
$$\frac{V}{W}$$
,

where V denotes as visibility which are measured with number of inlinks. The visibility may be calculated using the Boolean query syntax as: linkdomain:X –domain:X, where X is the domain name. In our study, it is found that Harvard University being 2nd topper is having the highest WIF (1.14), University of Tokyo, being 2nd topper in Asian university having highest WIF (0.53) and University of Delhi being the 6th topper Indian university occupies the highest WIF (0.72)

5.8.2 Measuring Web Usability Factor (WUF)

The WUF measures the usability of websites. It may

be calculated using the formula as:
$$WUF = \frac{O}{W}$$

where O denotes as outlinks (it is calculated using linkfromdomain:X, where X is the domain name.

Table 11. Descriptive statistics of the data of top tenIndian universities (TTIU) (n=10)

Variables	TTIU	TTAU	TTWU
Average webpage	1,20,710	18,80,100	65,55,000
Average inlinks	25,400	5,06,200	39,17,600
Average self-links	57,860	1,103,500	31,73,000
Highest WIF	0.74	0.53	1.14
Percentage of inlinks	30.51%	31.45%	55.25%
Percentage of self-links	69.49%	68.55%	44.75%

5.8.3 Measuring Link Propensity (LP)

Link propensity may be measured using the formula $as: IP = \frac{Links \text{ from site A to site B}}{2}$.

$$\left[(Pages in site A) * (Pages in site B) \right]$$

where A and B denotes site names and the denominator can be calculated as: linkfromdomain:X AND domain:Y, where X and Y are domain names.

5.8.4 Link Metrics

Ingwersen's (1998) concept of web impact factor is the primary link metrics. Counting average inlinks per page for a site, counting average inlinks per faculty members (Thelwall, 2001a) are also few examples. Table 11 summaries some key results, which may be of interest to look at a glance the comparative situation among TTWU, TTAU and TTIU through following key variables.

From Table 11, it is clearly visible that average inlinks are very less with compared to top ten World universities. Therefore, it is understood that the variability in the distribution of webpages and inlinks are very high.

6. DISCUSSIONS AND CONCLUSIONS

The study has thrown a light on the presence of web interconnectivity:

- (i) Between top level Indian universities with top level World universities, and
- (ii) Between top level Indian universities with top level Asian universities.

It is found from these studies that there is comparatively weaker web connectivity between top Indian universities with Asian universities in comparison with top level world universities. The study reflects that for the case of top level Indian universities, the cosine value is 0.8650, which implies that there is a strong similarity in hyperlink pattern among top level Indian universities.

The indicators used in ranking under different ranking systems may differ. As a result, the concerned authority should concentrate upon improving those areas or indicators resulting into either improved ranking in the global ranking system. The percentage of inlinks and self-links for top ten Asian universities are 31.45 % and 68.55 % and same figure for top ten Indian universities are 30.51 % and 69.49 % respectively. Interestingly, if we look the same figure for top ten world universities the percentage of inlinks are more than percentage of self-links i.e. inlinks (55.25 %) and self-links (44.75 %).

This phenomenon is completely opposite for the case of Indian and Asian top ten universities. If we closely analyse the data in Table 11, an interesting point may be noted that the average inlinks for

top ten world universities are 150 times more than TTIU; and 7 times more than TTAU; but average webpage for top ten world universities are only 54 times more than TTIU; 3.5 times more than TTIU. Hence, it can be concluded that the visibility of top ten world universities are far more than Asian and Indian universities.

Based on the summary of findings, the administrators and decision makers may take some corrective measures to improve their web performance by enhancing the quality indicators and incorporating the quality teaching learning materials, sharing the R&D outputs, extending the academic cooperation thereby enhancing the visibility of their websites in turn their university.

REFERENCES

- Weiss, R., *et al.* Hypersuit: A hierarchical network search engine that exploits content-link hypertext clustering. Proceedings of 7th ACM Conference on Hypertext, ACM Press, New York, 1996.
- Abraham, R.H. Webometry: Measuring the complexity of the world wide web. Visual Math Institute, University of California at Santa Cruz.1996. http://www.ralphabraham.org/vita/redwood/vienna. html (accessed on 14 August 2010)
- Bossy, M.J. The last of the litter: Netometrics. 1995. http://bibliofr.info.unicaen.fr/bnum/jelec/ solaris/d02/2bossy.html (accessed on 10 November 2007).
- Larson, R. Bibliometrics of the World Wide Web: An explanatory analysis of the intellectual structure of cyberspace. *In* Proceedings of the 59th Annual Meeting of the ASIS, edited by S Hardin, 1996, 33, 71-79.
- Almind, T. C. & Ingwersen, P. Informetric analyses on the World Wide Web: Methodological approaches to webometrics. *Journal of Documentation*, 1997, 53(4), 404-26.
- Ingwersen, P. The calculation of web impact factors. *Journal of Documentation*, 1998, **54**(2), 236-43.
- Egghe, L. New informetric aspects of the Internet: some reflections and many Problems. J. Inf. Sci., 2000, 26(5), 329-35.
- 8. Brin, S. & Page, L. The anatomy of a large scale hyper textual Web search engine. *Comp.Networks and ISDN Sys.*, 1998, **30**(1-7), 107-17.
- Stuart, D., *et al.* UK academic web links and collaboration: An exploratory study. *J. Inf. Sci.*, 2007, **33**(2), 231-46.
- Jalal, S.K.; Biswas, S.C. & Mukhopadhyay, P.S. Webometric indicators for ranking of accredited Indian universities: An evaluatory study. *In*

Proceedings of All India IASLIC Conference, 27-30 Dec 2009, KIIT, Bhubaneswar. pp. 668-80.

- Jalal, S.K.; Biswas, S.C. & Mukhopadhyay, P.S. Web presence of selected Asian countries: A webometric study. *In* 5th International Conference on Webometrics, Informetrics and Scientometrics, Dalian, 13-16 September 2009
- Berners-Lee, T. Realizing the full potential of the web. http://www.w3.org/1998/02/potential. html (accessed on 10 March 2007).
- 13. Henzinger, M.R. Hyperlink analysis for the web. *IEEE Internet Computing*, 2001, **5**(1), 45-50.
- Bjorneborn, L. Small world link structures across an academic web space: A library and information science approach. Department of Information Studies, Royal School of Library & Information Science, Denmark, 2004. PhD Thesis.
- Harries, G., *et al.* Hyperlinks as a data source for science mapping. *J. Inf. Sci.*, 2004, **30**(5), 436-47.
- Smith, A. A tale of two Web spaces: Comparing sites using Web impact factors. *Journal of Documentation*, 1999, **55**(5), 577-92.
- Björneborn, L. & Ingwersen, P. Perspectives of webometrics. *Scientometrics*, 2001, **50**(1), 65-82.
- 18. Aguillo, I.F., *et al.* Comparing university ranking. *Scientometrics*, 2010, **85**(1), 243-56.
- Hemerks, G. & Van Den Besselaar, P. Analyzing hyperlink networks: The meaning of hyperlink based indicators of knowledge production. *Cybermetrics*, 2006, **10**(1). Paper-1 http://www. cindoc.csic.es/cybermetrics/articles/v10ilp1.html (accessed on 14 August 2010)
- Nwagwa, W.E. & Agarin, O.A. Webometric analysis of Nigerian university's websites. *Ibadan J. Soc. Sci.*, 2007, **5**(1), 43-54
- Onyancha, O. B. & Ocholla, N.D. The Performance of South African and Kenyan universities on the world wide web: A web Link analysis. *Cybermetrics*, 2007, **11**(1). http://www.cindoc.csic. es/cybermetrics/articles/v11i1p2.html (accessed on 18 September 2010).
- Li, X, et al. National and international university departmental web site interlinking: Part 2, link patterns. *Scientometrics*, 2005, 64(2), 187-208.
- Vaughan, L. & You, J. Word co-occurances on webpages as a measure of the relatedness of organizations: A new webometric approach. *Journal of Informetrics*, 2010, 4(4), 483-91.
- 24. Ranking web of world universities, January 2011. http://www.webometrics.info/top12000.asp (accessed on 16 February 2011).

Data collected for top ten World universities

Annexure 1

S. No.	Name	Domain	Webpage	Inlinks	Self-links	WIF[R]
1.	Massachusetts Institute of Technology	mit.edu	9060000	4780000	4300000	0.53
2.	Harvard University	harvard.edu	3560000	4070000	1690000	1.14
3.	Stanford University	stanford.edu	3990000	3430000	2020000	0.86
4.	University of California Barkley	berkeley.edu	3730000	2510000	1740000	0.67
5.	Cornell University	cornell.edu	4170000	2700000	1760000	0.65
6.	University of Wisconsin Madison	wisc.edu	4210000	2030000	1620000	0.48
7.	University of Michigan	umich.edu	2960000	2410000	1610000	0.81
8.	University of Minnesota	umn.edu	2540000	1760000	1290000	0.69
9.	University of Washington	washington.edu	2780000	1290000	1370000	0.46
10.	University of Pennsylvania	upenn.edu	2200000	2130000	1030000	0.97

Source: Yahoo! dated 22nd Feb 2011

Data collected for top ten Asian universities

Annexure 2

S. No.	University	Domain	Webpage	Inlinks	Self-links	WIF
1.	National Taiwan University	ntu.edu.tw	3700000	749000	2160000	0.20
2.	University of Tokyo	u-tokyo.ac.jp	2870000	1530000	1830000	0.53
3.	Kyoto University	kyoto-u.ac.jp	2650000	530000	1820000	0.20
4.	National Cheng Kung University	ncku.edu.tw	1870000	228000	792000	0.12
5.	National Chiao Tung University	nctu.edu.tw	2830000	252000	1170000	0.09
6.	National University of Singapore	nus.edu.sg	704000	259000	319000	0.37
7.	National Central University	ncu.edu.tw	673000	333000	416000	0.49
8.	University of Hong Kong	hku.hk	1760000	400000	1350000	0.23
9.	Osaka University	osaka-u.ac.jp	684000	304000	448000	0.44
10.	Keio University	keio.ac.jp	1060000	477000	730000	0.45

Source: Yahoo! dated 22nd Feb 2011