
A Hybrid Technique for Searching a Reusable
Component from Software Libraries

DESIDOC Bulletin of Information Technology, Vol. 27, No. 5, September 2007, pp. 27-34
© 2007, DESIDOC

Reusing a previously developed and tested software component is the key to improve
the quality and productivity of the software. Searching a software from a software library
with an intent to reuse it is similar to searching a book from a library. Locating a book or
document in library may not be that difficult as searching a reusable component in a software
library. The main challenge in reusing software component lies in the retrieval and selection
of the appropriate component that would need no or least adaptation from a software
component library. Book can be searched on title, authors or some keywords, but these
features are not sufficient for searching the required functionality in a component library.
Using formal specifications to represent software components facilitates the determination
of reusability of the software component. The functionality of the software, and the well-
defined syntax of formal language makes processing amenable to automation. In this paper,
a hybrid model based on natural language and formal specifications using K-nn technique
has been discussed. Benefits of both formal methods and natural language have been
exploited for the retrieval of reusable software components. Existing components have been
weighted according to their degree of similarity on the basis of certain attributes to the required
component.

Rajesh K. Bhatia, Mayank Dave* and R.C. Joshi**

ABSTRACT

27Received 21 January 2007

Department of Computer Science and Engineering
Thapar Institute of Engineering and Technology, Patiala-147 004

* Department of Computer Engineering
National Institute of Technology, Kurukshetra-136 119

** Department of Electronics and Computer Engineering
Indian Institute of Technology, Roorkee-246 667

Keywords: Software library, formal specifications, software reuse, latex markup, Z notations,
K-nn technique

1. INTRODUCTION So the architecture and organisation of libraries
are also changing. Now libraries are supposed
to store knowledge, in an easy to access
form. But, as the amount of knowledge is
growing, it is difficult to store it in easy to
access form. Software reuse is a previously
developed concept in this new situation and

Earlier libraries used to store only books,
magazines, newspapers and other published
material. With advances in information
technology libraries now store data in electronic
form also; rather we have e-libraries now.

28 DESIDOC Bull. Inf. Technol., 2007, 27(5)

a mean for overcoming the software crisis1,2,3.
Current techniques to represent and manage
software components libraries are not sufficient.
Software systems based on analysis of natural
language documentation have been proposed
for constructing software libraries4,5. However,
searching of software components based on
natural language may lead to ambiguity and
inappropriate results.

All other problems due to natural language
like incompleteness and inconsistency can
also be minimised using formal specifications
to represent software components6-9. In the
present work a library of reusable software
components has been constructed. Software
components are considered similar to documents
stored in libraries. The way a user asseses
any document, book or any other knowledge
component in a library, in the same way
developers need to asses reusable components
from reusable software libraries. The proposed
technique is for software component search.
A software component can be considered
analogous to a book or any other source.
So, the same technique can be applied to
software components libraries.

1.1 Software Reuse

The major tasks of reuse system are to
classify the reusable components, add them
to a software components library, and retrieve
them whenever needed. It involves encoding
information at various levels of abstraction,
storing this information for future reference,
matching of new and old situations, duplication
of already developed objects and actions,
and their adaptation to suit new requirements.
Effective reuse of software increases productivity,
saves time, and reduces cost of software
development. Various components that can
be reused include code fragments, logical
program structures, functional structures,
domain knowledge, requirements, design
documents, etc. The process of software
reuse comprises three stages of component
processing, i.e., analysis, organisation, and
synthesis10. The first step in analysis is the
identification of components in the present
domain. Then comes the understanding and
representation in a suitable formalism to

reflect their function and semantics with possible
generalisation to widen the scope of their
future applications. Second step is classification
of software components followed by its
storage in appropriate software repositories.
It also includes searching and retrieval whenever
needed. Third step includes selection of a
component from retrieved candidates, its
adaptation and integration in the new software.
Here, the main focus is on the component
organisation of the software reuse in which
storing, searching, and retrieving is done. It
also covers the representation of the code
fragment.

1.2 Formal Methods

Formal methods refer to the use of
techniques from formal logic and discrete
mathematics in the specification, design,
and construction of computer systems and
softwares. This is analogous to the role of
mathematics in all other engineering disciplines.
Mathematics provides ways of modelling and
predicting the behaviour of systems through
calculation. Examples of formal languages
are Z, VDM, Larch, Promela, ACSR, Trio
and x-machines, etc. Reuse systems use
formal methods that remove ambiguities,
incompleteness and inconsistencies. Formal
modelling of a system usually entails translating
description of the system from a non-
mathematical model (data-flow diagrams, object
diagrams, scenarios, English text, etc.) into
a formal specification using one of several
formal languages. This results in a system
description that possesses a high degree of
logical precision. The use of formal methods
to specify components can more precisely
describe the functionality of the components
that helps to retrieve the set of more appropriate
and required components.

2. SPECIFICATION OF SOFTWARE
COMPONENTS

Formal methods can be used to describe
software components in the library. In this
paper, Z notation has been used to specify
software components. The query specification
is in Z notation, which is compared with the
existing specification in the database.

DESIDOC Bull. Inf. Technol., 2007, 27(5) 29

The Z notation11 is a model-oriented formal
specification language developed by the
Programming Research Group at Oxford
University Computing Laboratory in the early
1980s. Since then, it has been used to
specify a wide spectrum of software systems
including database systems, transaction
systems, distributed computing systems,
and operating systems12. Z is a non-executable
but strongly-typed specification language.
ZTC is a type-checker for Z, which determines
if there are syntactical and typing errors in
Z specifications13. There is no compiler for
Z. However, there are tools to animate, or
execute, subsets of Z.

LATEX markup is used to specify
components in Z notation. A markup is a
mapping to or from unicode representation.
LATEX markup based on a 7-bit ASCII is
suitable for processing by tools to render Z
characters in their mathematical form14. The
markups described show how to translate
between a markup token (strings of ASCII
markup characters) into the corresponding
string of Z characters. Remaining individual
markup characters that do not form a special
markup token such as digits, latin letters,
and much punctuation convert directly to
the corresponding Z character, from ASCII-
xy to Unicode U+00xy. A LATEX command
is a backslash ‘\’ followed by a string of
alphabetic characters (up to the first non-
alphabetic character), or by a single non-
alphabetic character. The LATEX markups
for the Z specifications are given below:

\begin{spec}
\begin{zed}

[NAME, INFO]
\end{zed}

\begin{schema}{DataDictionary}
dict: NAME\pfun INFO\\
defined: \power NAME

\where
defined = \dom dict

\end{schema}
\end{spec}

3. K-NEAREST NEIGHBOURS
TECHNIQUE

The term nearest neighbours technique
refers to a technique that identifies the closest

points to a given point in some multi-dimensional
space. How nearness is best measured and
how data is best organised are challenging,
non-trivial problems. Any k-nearest neighbours
technique is effective only to the extent that
the assumption of clustering behaviour is
correct. The k-nearest neighbours method
is most frequently used to tentatively classify
points when firm class bounds are not established.
The vital part of any nearest neighbours technique
is an appropriate distance metric, or similarity-
measuring function15. It is reasonable to assume
that objects or observations, which are close
together according to some appropriate metric,
will have the same attributes, behaviour and
thus classification.

4. PROPOSED SYSTEM USING K-
NN TECHNIQUE

The aim of using nearest neighbours
techniques is that items with similar attributes
tend to cluster. On the basis of certain attributes,
similarity between the two specifications is
determined. As stated in the Introduction of
the paper, using natural language alone may
hinder the retrieval process due to the problem
of ambiguity, incompleteness, and inconsistency.
To remove these problems, formal methods
were also used as they have numerous benefits
for describing the system and in software
reuse. Therefore, use of both the natural
language and formal methods were tried for
the reuse system. This paper presents a
hybrid approach, which uses both formal
method and natural language for the library
construction and for retrieval of reusable
software components. This approach is flexible
as it allows user to select weights. If natural
keywords in a system appear to give better
results, then more weight can be assigned
to natural keywords, otherwise, more weights
can be assigned to formal specifications.

Formal specifications of the software
components are stored in the library along
with URL and relevant keywords in natural
language for a particular component. Existing
components were weighed according to their
degree of similarity to the required component.
The proposed reuse system compares query
and existing components in terms of their

30 DESIDOC Bull. Inf. Technol., 2007, 27(5)

numerous features. The following attributes
were used to compute the similarity:

Ratio of number of keywords matched
to number of keywords entered.

Ratio of number of keywords matched
to number of keywords in a database
for a component specification.

Declaration part of schema.

Ratio of number of LATEX markup matched
to the total number of input markup in
query specification.

Ratio of number of LATEX markup matched
to the total number of markups in
specifications present in the database.

To implement the system, different weights
were assigned to different parts of the
specifications (Table 1). To reduce the search
space, keywords were first matched.
Specifications corresponding to matched
keywords were then matched to the query
specification to get the percentage match of
the component. The outcome was the set of
retrieved components with percentage of similarity
in descending order. The equation used to
calculate the percentage match of query
specification and the specifications in the
database, using the assigned weights, is as
follows:

Percentage match = (nm/N1*W1) + (nm/N2*W2)
+ m (W3 + timax)

where, timax = (ni/Nqi * W4) + (ni/Ndi * W5)

i = number of method schema in a component
and i = 1, in case of state schema

m = 1, in the case of declaration match, or
0 otherwise

nm = number of keywords matched

N1 = number of keywords entered by user
for matching

N2 = number of keywords present in the
database for a component specification

ni = number of Z notation markups matched

Nqi = number of Z notation markups entered
by user in predicate part or data invariant
part of query specification

Ndi = number of Z notation markups in predicate
part or data invariant part of the specification
to be matched in the database

W1 = Percentage weight given to query
keywords match

W2 = Percentage weight given to keywords
match present in database

W3 = Percentage weight given to declaration
part of the schema

W4 = Percentage weight given to number of
markups matched entered by user in
predicate part of the schema

W5 = Percentage weight given to number of
markups matched present in specification
of database in predicate part of the
schema.

Table 1. Weights assigned to various specifications

Attribute Percentage weight assigned

Ratio of number of keywords matched to number
of input keywords (W1)

10

Ratio of number of keywords matched to number
of keywords in a database for a component
specification (excess keywords) (W2)

10

Declaration part of schema (W3) 35

Ratio of number of markups matched to number
of input markups in query specification (predicate
part) (W4)

25

Ratio of number of markups matched to number
of markups in specification present in database
(predicate part) (W5)

20

DESIDOC Bull. Inf. Technol., 2007, 27(5) 31

5. TOOL SUPPORT

ReuseWELL system was implemented
based on k-nn technique. The system is
implemented in Java, and takes the input of
Z specification in LATEX markup as per ISO
Standard 13568 for Z notation because all
systems do not support 16-bit Unicode15,
the definitive representation of Z characters.
Only a limited subset of LATEX markup was
used for implementation of ReuseWELL system.

Though the ReuseWELL tool is specifically
designed for retrieving components, similar
types of systems should be applicable to
other kinds of analog prediction problems
where large databases exists. The proposed
system will comprise two parts: (i) a large
database of components that are specified
with Z notation using LATEX markup along
with natural specification of component for
search, and (ii) K-nn algorithm that measures
the similarity between the two specifications
based on some attributes.

5.1 Database of Z Specifications of
Components

The developed database comprises Z
specifications of the components using LATEX
markup along with the keywords and URL of
a particular component. There are four tables
in the database. Description of each table
and its fields are:

KeywordsT: In this table, there are total two
fields, keywords and ID. Keywords field contains
the keywords and ID field contains identifications
for the corresponding keywords entered by the
user for adding different specifications.

URLT: In this table, there are two fields ID and
URL. In the table, specification ID and location of
the actual components are there.

StateschemaT: There are three fields in this
table, ID, state, and data invariants. State of the
system, if any, is added in the state field. Data
invariants are stored in the data invariants field. ID
specification is stored in the ID field, which is in Z
notation using LATEX markup.

SchemaT: There are three fields in this table, ID,
signature, and predicates. Method signature, if
any, is stored in signature field and its predicates,

i.e., pre- and post- conditions are stored in the
predicates field. The ID of the specification, which
is in Z notation using LATEX markup, is stored in
the ID field.

5.2 Steps for Matching

Following steps are used for matching:

(i) Find the specifications in the library
whose keywords matched with input
keywords

(ii) Find similarity on the basis of number
of keywords matched between query and
available specifications

(iii) Find similarity of specifications of each
input method to the specifications of
the every other method of that particular
component schema

(iv) Method with highest percentage of similarity
with input method is considered and its
similarity is added to the overall percentage
of similarity between the specifications
of components

(v) Overall similarity is computed on the
basis of different attributes and it is
placed at a proper position in descending
order of similarity in a list of similar
component for user

(vi) Steps 1 to 5 are repeated until no other
match is found

(vii) List of components with their URL or
addresses is displayed to the user.

6. CASE STUDY

Query specifications entered for matching
and specifications of the software component
present in the library are shown in Table 2
as:

N1 = 3 N2 = 4 nm = 2

ni = 5 Nqi = 5 Ndi = 8

W1 = 10 W2 = 10 W3 = 35

W4 = 25

W5 = 20; m = 1, because number and type of
markups in both the query and present

32 DESIDOC Bull. Inf. Technol., 2007, 27(5)

specification is the same

t = (5/5 * 25) + (5/8 * 20) = 37.5

Therefore, percentage match =

(2/3*10) + (2/4*10) + 1(35 + 37.5) = 84.16

Percentage match for the entered query
specification with this particular specification
present in database is 84.16. Keeping all
other specifications same, if the number of
input keywords or keywords present in the
database are changed, the numbers of keywords
match may vary. Results will change as
shown in Table 3.

Case 1: Number of keywords available in natural
language specifications in database for a
component is in excess as compared to matched
keyword, resulting in per centage match of 84.16.

Case 2: As compared to Case 1, here number of
available keywords and keywords matched are
the same (no excess keywords), which resulted
in increase in percentage match from 84.16 to
89.16.

Case 3: In this case, number of input keywords
and matched keywords are the same, which gives
the percentage match of 90.

Case 4: In this case, the number of input
keywords, available keywords, and matched
keywords is the same, which further improves the
percentage match to 92.5 from 84.6.

To further increase the percentage match,
the number of markups entered by the user
in predicate part of input specification should
match with the number of markups present
in predicate part of available specification.

7. CONCLUSION AND FUTURE
SCOPE

The paper discussed the reuse and benefits
of formal methods in reuse. It also demonstrated
the benefits of using natural language along
with formal methods, which is supported by
this tool. Approach followed in the present
work, is not fully dependent on formal
specification; instead it tried to exploit the

No. of input
keywords

(N1)

No. of matched
keywords

(nm)

No. of keywords
present

(N2)

% match

Case 1 3 2 4 84.16

Case 2 3 2 2 89.16

Case 3 3 3 4 90.00

Case 4 3 3 3 92.50

Table 3. Percentage result match for different cases

Table 2. An example for matching

Input Specifications

1) Natural language specification entered—
add, insert, Birthday Book

2) Formal specification entered
Declaration part: -

\Delta Birthday Book
name?: NAME
date?: DATE

Predicate part:
name? \notin known

 birthday' = birthday \cup {name? \inj date?}

Specifications available

1) Natural language specification present—add,
save, date, Birthday Book

2) Formal specification present
Declaration part: -

\Delta Birthday Book
name?: NAME
date?: DATE

Predicate part:
name? \notin known

 birthday' = birthday \cup {name? \inj date?} \land
\# count < max

DESIDOC Bull. Inf. Technol., 2007, 27(5) 33

benefits of both formal methods and natural
language in the retrieval of software components.

Its future scope includes extending this
work for more accuracy and optimisation in
the component retrieval process. Further,
this can be explored in the following directions:

At present, the ReuseWELL system has
just been implemented for subset of the
Z notation. It can be extended and
implemented for every Z markup.

ReuseWELL tool has been implemented
for software library, the same can be
extended for other libraries also.

REFERENCES

1. Biggerstaff, Ted J. Software reusability:
Concepts and models, Vol. 1. ACM Press,
New York, 1989.

2. Biggerstaff, Ted J. Software reusability:
Application and experience, Vol. 2. ACM
Press, New York, 1989.

3. Krueger, Charles W. Software reuse. ACM
Computing Surveys, 1992, 24(2), 131-83.

4. Maarek, Y.S.; Berry, D.M. & Kaiser, G.E.
An information retrieval approach for
automatic constructing software libraries.
IEEE Trans. Software Engineering, 1991,
17(8), 800–913.

5. Helm, R. & Maarek, Y.S. Integrating
information retrieval and domain-specific
approaches for browsing and retrieval in
object-oriented class libraries. In
Proceedings of OOPSLA ’91, 1991, pp.
47-61.

6. Betty, H.C.; Cheng; & Jeng, Jun-Jang.
Formal methods applied to reuse. In

Proceedings of the Fifth Workshop in
Software Reuse, 1992.

7. London, R.L. Specifying reusable components
using Z: Realistics sets and dictionaries.
ACM SIGSOFT Software Engineering Notes,
1989, 14(3), 120-27.

8. Weide, B.W.; Ogden, W.F. & Zweben,
S.H. Reusable software components.
Advances in Computers, 1991, 33, 1- 65.

9. Wing, Jeannette M. A specifiers introduction
to formal methods. IEEE Computer, 1990,
23(9), 8–24.

10. Cybulski, Jacob L. Introduction to software
reuse. Department of Information Systems,
The University of Melbourne, Parkville,
Australia.

11. The Z notation: A reference manual, Ed.
2, edited by J.M. Spivey. Prentice Hall
International, London, 1992.

12. Specification case studies, Ed. 2, edited
by I. Hayes. Prentice Hall International,
London, 1993.

13. Xiaoping, Jia. ZTC: A type checker for Z.
Institute of Software Engineering, DePaul
University, Chicago, USA,1994.

14. Lamport, L. LATEX: A document preparation
system, Ed. 2. Addison-Wesley, 1994.

15. Dudani, S.A. The distance-weighted k-
nearest neighbour rule. IEEE Trans. Systems,
Man, and Cybernetics, 1976, SMC-6(4),
325-27.

16. Information technology—Universal Multiple-
Octet Coded Character Set (UCS), Pt 1.
Architecture and basic multilingual plane.
ISO/IEC 10646-1:1993.

34 DESIDOC Bull. Inf. Technol., 2007, 27(5)

Shri Rajesh Bhatia obtained his BE in Computer Science and Engineering in 1994,
and ME in Computer Science in 2001, respectively. His research interests are
software reuse, software testing and component-based software engineering.
Presently, he is working as Assistant Professor in the Department of Computer
Science and Engineering at Thapar Institute of Engineering & Technology (Deemed
University), Patiala. He is also Principle Investigator of a research project on Center
of Excellence in Software Repositories.

Dr Mayank Dave obtained his BSc (Engg) from the Aligarh Muslim University in
1989, MTech from the University of Roorkee in 1991, and PhD from IIT, Roorkee
in 2002. He joined Department of Computer Engineering at the National Institute
of Technology, Kurukshetra (previously Regional Engineering College) in 1991
where he is continuing as Senior Lecturer. He has guided several BTech and
MTech projects and dissertations and currently guiding two PhDs. He has published
30 papers in referred journals and conferences. He is member of IEEE, IEEE
Computer Society, IETE, ISTE and Institute of Engineers (India). His research interests
include computer networks, software engineering, and database systems.

Dr R.C. Joshi received his BE (Electrical Engineering) from the Allahabad University
in 1967, and ME and PhD (Electronics and Computer Engineering) from the University
of Roorkee in 1970 and 1980, respectively. He joined J.K. Institute, Allahabad
University as Lecturer in 1967, and is presently Head of Institute’s Computer
Centre. He has published more than 50 research papers in national/international
journals/conferences. Dr Joshi has also done 18 months training at ENSER Grenoble,
France under Indo-French Collaboration Programme. He is recepient of Gold Medal
by Institute of Engineers for best research paper in 1978. His research interests
include parallel and distributed processing, artificial intelligence, DBMS, and wireless
networks.

Contributors

