# Content-based Document Recommender System for Aerospace Grey Literature: Experimental Testing and User Opinion Survey 

K. Nageswara Rao and V.G. Talwar*<br>Defence Research \& Development Laboratory, Hyderabad-500 058<br>E-mail: nageswararao@drdl.drdo.in<br>*Vice-Chancellor, University of Mysore, Mysore-570 005


#### Abstract

The study aims to test content-based document recommender system (CODORS) with sample data to retrieve most relevant technical documents without necessarily matching title terms and closely related to particular search term(s). The CODORS system was put open for users to search and obtain recommendations with weighted relevance ranking and also allowed to compare the results obtained through general OPAC search engine for the same keywords. Based on the findings of the experimental testing and evaluation, some conclusions have been drawn:The results exhibited that the CODORS search provided many more relevant documents and increased the recall value as compared to general OPAC search and also revealed documents that were retrieved for a given query through OPAC search appeared at different places-top, middle or end of the ranked list of documents generated through the CODORS search for the same query.


Keywords: Recommender systems, content-based document recommender system, CODORS, information retrieval, document retrieval

## 1. THE RESEARCH PROBLEM

The need for enhancing the recall value of the results retrieved motivated the researcher to search for a technique that would retrieve more documents for a given query, particularly grey literature on aerospace. Some retrieval models generally rank retrieved documents as relevant to the query according to some criteria and such models are called as ranking models ${ }^{1}$. The study of advances made in IR systems, more particularly retrieval models such as Boolean model, vector space model, and probabilistic retrieval models, showed not only the possibility of retrieving more relevant documents for a given query, but also ranking of these documents so as to facilitate the user to select the relevant documents based on the objectivity. It also provided a cut-off point in case if large number of relevant documents were retrieved. With this aim in mind, the authors chose the research problem entitled, "Designing Content-based Document Recommender System for aerospace grey literature".

The authors, hence, developed a test-bed database of grey literature on aerospace engineering using 'Dialog OnDisc Aerospace Database' brought out by American

Institute of Aeronautics and Astronautics (AIAA) for this purpose. Further, the authors developed a recommender system known as Content-based Document Recommender System (CODORS) ${ }^{2}$ using Boolean operators. The recommender system so developed was put to test using the above database and results of CODORS searches were compared with the retrieved output of the normal OPAC searches. The major issues of concern in designing this recommender system were: to increase the search capability and to get ranked list of documents retrieved by automatically assigning weightage to each document retrieved.

## 2. OBJECTIVES OF THE STUDY

The objectives of the study are:
$\%$ To understand and to assess the capability of general OPAC to retrieve grey literature relevant to scientists working in the field of aerospace engineering and allied sciences.
$\because$ To design CODORS using first order descriptors in aerospace engineering and allied sciences based
on individual user search words (profiles) to facilitate easy access to and optimum utilisation of relevant information in the form of grey literature.

## 3. HYPOTHESIS

Although the objectives of the study are clear, there were chances that the study may deviate from the track as the research progresses. Hence, it was necessary to have a hypothesis running through the objectives. For the present study, the following hypothesis was formulated:
$\mathrm{H}+$ : Use of CODORS as compared to general OPAC searches results in retrieving comprehensive, highly relevant and ranked documents in the field of aerospace engineering and allied sciences.

## 4. METHODOLOGY OF THE STUDY

The study adopted was the experimental testing and user opinion surveys. It began with the development of bibliographic database of papers of conference proceedings relevant in the field of aerospace engineering and allied sciences. Titles of the conference papers and associated descriptors were considered essential for the study. As the efficiency and accuracy of the system to be developed depended solely on the suitable descriptors representing the thought content of the documents, the descriptors assigned in the source, i.e., Dialog OnDisc Aerospace Database were used as these descriptors were assigned using NASA thesaurus. The next step was the development of CODORS using 'first-order descriptors'. The steps involved in the development of CODORS are described.

S1: Extraction of individual search words (terms) entered by the users.

S2: Retrieval of titles of all documents having all the search words (terms) entered by the users.

S3: Retrieval of all descriptors that are assigned to all documents retrieved at step S2.

S4: Formulation of weighted vector of descriptors as it is the base of user profile. The elements of the vector are termed as 'first-order descriptors'. Weights for the descriptors are calculated based on number of occurrences of individual descriptors with reference to total number of descriptors retrieved at step S3.

S5: Mining of all documents titles from the database, which are having at least any one of the 'First Order Descriptors' retrieved at step S3.

S6: With the help of matching descriptors, calculation of the percentage weightage of each document retrived at step S5.

S7: Calculation of "Boosting Factor" with the help of highest ranked document from CODORS results and adding to every document in the results.

S8: Displaying the documents retrieved at Step S7 on the basis of decreasing order of relevance.

## 5. SYSTEM TESTING WITH SAMPLE SEARCH QUERIES

Exercising formal testing of information retrieval systems was carried out initially in Cranfield experiments in early 1960s. The aim of Cranfield research was to find ways to improve the retrieval effectiveness of IR systems through better indexing languages and methods ${ }^{3}$. For performance comparisons, quantitative measures used in the Cranfield II experiments were recall and precision, which are the derivative of the concept of relevance ${ }^{4}$. A series of IR experiments were conducted on the SMART system by Gerald Salton ${ }^{5,6}$. A series of experiments, known as TREC (Text TEtrieval Conference), were started in 1992 and were considered as real experimental approach to information retrieval evaluation.

Having designed the CODORS recommender system, it was put to test. As many as 124 search tests were conducted using different key terms ranging from broader to narrower subject fields in the area of aerospace engineering. The hit results of general OPAC searches and CODORS searches were studied, tabulated, and compared to assess the usefulness of CODORS. Detailed search queries and results obtained using normal OPAC and CODORS are shown in Appendix 1.

## 6. SUMMARY OF FINDINGS WITH SAMPLE SEARCH QUERIES

The findings of the experiments conducted on the test database using CODORS recommender system in actual environment are summarised here under:
(i) General OPAC search could retrieve documents ranging between 2 to 10 for a given query. The search under CODORS system retrieved 10-500 documents and even more for a given query. It, however, depends on the subject area of the query. That means the recall value of the searches under CODORS is found to be much greater compared to that of general OPAC searches.
(ii) The CODORS searches provided ranking of all the documents retrieved and this ranking is based on the weightages of the document relevance for a given query.
(iii) In the ranking order, majority of the documents retrieved from the general OPAC are normally placed
either somewhere in the top, middle or in the end of the ranked list of documents which means many more relevant documents are left un-retrieved, in case of simple OPAC search.

## 7. OPINION SURVEY OF USERS ON CODORS

The questionnaire is an importa survey technique for gathering data from users during recommender system evaluation experiments. Questionnaire is structured research instrument which is used to collect research data in a face-to-face interview, self-completion survey, telephone interview or Web survey. It consists of a series of questions, which may be in form, on interview schedule on paper, or on a webpage ${ }^{7}$.

The system was thrown open to the users to enable them to use CODORS searches and thereby test the usability of this recommender system in actual environment. The scientists were provided URLs of both general OPAC and CODORS on Intranet of Defence Research and Development Laboratory (DRDL) and requested to search their required information relating to grey literature. To assess and confirm the usability of the recommender system-CODORS-in actual environment an opinion survey of users was conducted through structured questionnaire. As many as 27 questions relating to various aspects of information search including use of OPAC and CODORS were provided in the questionnaire (Appendix 2).

The questionnaire comprised closed questions that provide a fixed set of responses with which users must respond such as more relevant, most relevant and not relevant, etc. The questionnaire was distributed to 150 scientists and technocrats who are the regular users of the library. All the 150 users responded to the questionnaire. These questionnaires have been tabulated, analysed and results have been reported in succeeding sections.

## 8. ANALYSIS OF OPINION SURVEY

### 8.1 Familiarity of Users with Online Public Access Catalogue

Users were asked to furnish to what extent they are familiar with Online Public Access Catalogue (OPAC). Table 1 shows users opinion on their familiarity with OPAC of libraries. Out of 150 users, 78 (52 per cent)

Table 1. Familiarity with OPAC

| Opinion | No. of respondents | Percentage |
| :--- | :---: | :---: |
| Not very familiar | 1 | 00.67 |
| Familiar | 78 | 52.00 |
| Very familiar | 71 | 47.33 |

respondents mentioned that they are familiar with OPACs, 71 (47.33per cent) respondents said that they are very familiar with OPACs and 1 (00.67per cent) respondent stated that he is not very familiar with OPACs.

### 8.2 Relevance of Documents Retrieved Using Simple OPAC

Opinions of users about the relevance of documents retrieved through OPAC searches were collected under 5 options as shown in Table 2. Table 2 depicts that 86 (57.33 per cent) respondents mentioned that the results are relevant between 50-74 per cent, 60 ( 40 per cent)

Table 2. Relevance of documents retrieved using simple OPAC

| Opinion | No. of respondents | Percentage |
| :--- | :---: | :---: |
| 100 per cent <br> relevant | 0 | 00.00 |
| Between 75-99 <br> per cent relevant | 60 | 40.00 |
| Between 50-74 <br> per cent relevant | 86 | 57.33 |
| Between 25-49 <br> per cent relevant <br> Less than 25 per <br> cent relevant | 4 | 02.67 |

respondents said that the results are relevant between 75-99 per cent and 4 (2.67 per cent) respondents stated that the results are relevant between 25-49 per cent. No user mentioned that the results were 100 per cent relevant, and they were less than 25 per cent relevant.

### 8.3 Display of Documents with Relevance Ranking in OPAC Search

To the question whether results of general OPAC searches are displayed in ranked order giving their weightages of relevance, all 150 (100.00per cent) respondents answered that the search results were not displayed with relevance ranking.

### 8.4 Retrieval of Results in OPAC Searches where Key Terms did not Match Titles

Users were asked to furnish their opinion on results of OPAC searches in cases where the key term keyed in by them did not match the title of document. All 150 (100 per cent) respondents answered that there were no hits and the search results were not displayed.

### 8.5 Users' Knowledge of Filtering Systems for Filtering Relevant Information

To a question about the knowledge of filtering systems 125 (83.33 per cent) respondents expressed that they were not aware of any filtering system for
filtering relevant information and 25 (16.67 per cent) respondents said that they were aware of filtering systems. Table 3 depicts the same.

Table 3. Knowledge of filtering systems for filtering relevant information

| Opinion | No. of respondents | Percentage |
| :--- | :---: | :---: |
| Aware | 25 | 16.67 |
| Not aware | 125 | 83.33 |

### 8.6 Users' Knowledge about Thesaurus and its Importance in Information Retrieval

Table 4 depicts that 119 (79.33 per cent) respondents were not aware of thesaurus and its importance in information retrieval. Thirty-one (20.67 per cent) respondents were aware of the importance of the thesaurus.

Table 4. Knowledge about thesaurus and its importance in information retrieval

| Opinion | No. of respondents | Percentage |
| :---: | :---: | :---: |
| Yes | 31 | 20.67 |
| No | 119 | 79.33 |

### 8.7 Users' Knowledge about Concept-based Searching

Table 5 shows that 120 (80 per cent) respondents were not having the knowledge about concept-based searching and 30 (20 per cent) respondents were having the knowledge about concept-based searching.

Table 5. Knowledge about concept-based searching

| Opinion | No. of respondents | Percentage |
| :---: | :---: | :---: |
| Yes | 30 | 20 |
| No | 120 | 80 |

### 8.8 Users' Knowledge of Recommender Systems for Identifying Relevant Information

To a question about the knowledge of recommender systems for identifying relevant information, all 150 (100 per cent) respondents replied that they were aware of recommender system.

### 8.9 Users' Awareness of Content-based Document Recommender System

To a question whether the users are aware of CODORS, all 150 (100 per cent) respondents replied positively and said that they were aware of CODORS.

### 8.10 Usage of CODORS for Searching Required Information by the Users

Users were asked whether they use CODORS for searching required information. All 150 (100 per cent) respondents replied positively and said they were using CODORS for searching information of their requirement.

### 8.11 Usage Frequency of CODORS for Searching Required Information

Opinion on usage frequency of CODORS was collected from the respondents. Seventy-seven (51.33 per cent) respondents used CODORS 'once in a week', followed by 39 (26 per cent) respondents who used it twice in a week', 19 (12.67 per cent) respondents who used it 'once in 2 weeks', and remaining 11 ( 7.33 per cent) respondents who used it rarely (Table 6).

Table 6. Usage frequency of CODORS for searching required information

| Opinion | No. of respondents | Percentage |
| :--- | :---: | :---: |
| Daily | 0 | 00.00 |
| Thrice in a week | 4 | 02.67 |
| Twice in a week | 39 | 26.00 |
| Once in a week | 77 | 51.33 |
| Once in 2 weeks | 19 | 12.67 |
| Rarely | 8 | 05.33 |
| Not responded | 3 | 02.00 |

### 8.12 Usefulness of CODORS Results

Table 7 depicts users' opinion about the usefulness of CODORS results. Table 8 shows that 148 out of 150 representing 98.67 per cent of the total found the results useful and none have found them not useful. However, 2 (1.33 per cent) respondents have not responded to the query.

Table 7. Usefulness of CODORS results

| Opinion | No. of respondents | Percentage |
| :--- | :---: | :---: |
| Useful | 148 | 98.67 |
| Not useful | 0 | 00.00 |
| Not responded | 2 | 01.33 |

### 8.13 Expected Number of Hits from CODORS Search

Users were asked whether they had expected specific number of results before they completed their search through CODORS and if so whether the results obtained were more than the expectation and otherwise
less. Table 8 reveals that 134 ( 89.33 per cent) respondents got more results than they expected, 16 (10.67 per cent) respondents got expected number of results. But none of the user experienced hit results less than expectation.

Table 8. Expected number of hits from CODORS search

| Opinion | No. of respondents | Percentage |
| :---: | :---: | :---: |
| Expected | 16 | 10.67 |
| More than <br> expected | 134 | 89.33 |
| Less than <br> expected | 0 | 00.00 |

### 8.14 Relevance of CODORS Search Results

Respondents were asked to furnish their opinion about the relevance of the results of CODORS search. Table 9 depicts that for 72 ( 48.00 per cent) respondents the CODORS search results are relevant 'between 51-75 per cent', for 66 ( 44.00 per cent) respondents the results were relevant 'between 76-99 per cent', for 11 ( 7.33 per cent) respondents the results were relevant ' between 2650 per cent' and for 1 ( 0.67 per cent) respondent the results were 100 per cent relevant. None of the respondent expressed that results are below 25 per cent and as well not relevant.

Table 9. Relevance of CODORS search results

| Opinion | No. of respondents | Percentage |
| :--- | :---: | :---: |
| Not relevant | 0 | 00.00 |
| $<25 \%$ relevant | 0 | 00.00 |
| Between $26-50 \%$ <br> relevant | 72 | 07.33 |
| Between $51-75 \%$ <br> relevant | 66 | 48.00 |
| Between $76-99 \%$ <br> relevant | 44.00 |  |

### 8.15 Ease of use in Searching CODORS

Users were asked to state whether searching information through CODORS is easy and if so to what extent? Table 10 depicts that 123 ( 82.00 per cent) respondents expressed that searching for information using CODORS is 'very easy', followed by 22 (14.67 per

Table 10. Ease of use in searching CODORS

| Opinion | No. of respondents | Percentage |
| :--- | :---: | :---: |
| Not easy | 0 | 00.00 |
| Easy to some 5 03.33 <br> extent 22 14.67 <br> Moderately easy 123 82.00Very easy |  |  |

cent) respondents who said that it is 'moderately easy', 5 (3.33 per cent) respondents who opined that it is 'easy to some extent', and no respondent who mentioned 'Not easy' option.

### 8.16 Frustration Using CODORS by the Users

Users were asked to give their opinion if they got frustrated while using CODORS. There were 148 respondents representing 98.67 per cent of the total who opined that they were not frustrated. Only 2 ( 1.33 per cent) respondents expressed that they were frustrated (Table 11).

Table 11. Frustration while using CODORS

| Opinion | No. of respondents | Percentage |
| :--- | :---: | :---: |
| Yes | 2 | 01.33 |
| No | 148 | 98.67 |

### 8.17 Satisfaction about Display of Relevance Ranking of CODORS Search Results

When asked the users whether they were satisfied with the display of relevance ranking of CODORS results, all 150 ( 100 per cent) expressed positively.

### 8.18 Usefulness of CODORS for Finding Relevant Documents on a Particular Subject of Interest

Opinion expressed by the respondents on usefulness of CODORS for finding relevant documents on a particular subject of interest revealed that all 150 (100 per cent) respondents were positive opined that the CODORS is useful for finding relevant documents on a particular subject of interest.

### 8.19 Comprehensiveness of CODORS Results on a Particular Subject of Interest

All 150 (100) respondents expressed that CODORS search on a particular subject of interest provided them comprehensive search output.

### 8.20 Results of CODORS Searches with Key Terms that did not Match Title Terms

Users were asked to furnish whether they experienced hits in CODORS searches where in the key terms they used did not match with title of the document. One hundred forty-five ( 96.67 per cent) respondents stated they experienced hit results though key terms did not match with title of the documents. However, 5 ( 3.33 per cent) respondents expressed that they did not experienced hit results wherever the key terms did not match with terms in the title (Table 12).

Table 12. In CODORS results, key terms that did not match title terms

| Opinion | No. of respondents | Percentage |
| :--- | :---: | :---: |
| Obtained hit <br> results | 145 | 96.67 |
| Did not <br> obtained <br> hit results | 5 | 03.33 |

### 8.21 Percentage of Success in CODORS Results when Key Terms did not Match Title Terms

The authors collected the opinion under five options about the percentage of success in CODORS searches when key terms did not match title terms and tabulated the same. Table 13 revealed that 93 ( 62.00 per cent) respondents rated the success between 50-74 per cent, 35 (23.33 per cent) respondents rated the success between 75-99 per cent, and 22 (14.67 per cent) respondents rated the success between 25-49 per cent. None of the respondent has rated the success below 25 per cent and as well 100 per cent.

Table 13. Percentage of success in CODORS results when key terms did not match title terms

| Opinion | No. of respondents | Percentage |
| :--- | :---: | :--- |
| Less than $25 \%$ <br> success | 0 | 00.00 |
| Between $25-49 \%$ <br> success | 22 | 14.67 |
| Between $50-74 \%$ <br> success | 93 | 62.00 |
| Between $75-99 \%$ <br> success <br> $100 \%$ success | 35 | 23.33 |

### 8.22 Searching CODORS for Document of Highest Relevance

For a question whether they searched for results in CODORS keeping in mind a document of highest relevance, all (150; 100 per cent) respondents expressed positively.

### 8.23 Retrieving More Documents in Ranked Order in Addition to the Document of Interest.

User's opinion was sought on the retrieval of more relevant references in ranked order in addition to one that they considered has highest relevance all 150 (100.00 per cent) respondents opined positively.

### 8.24 Retrieval of Documents by CODORS Ranked Above the One Considered More Relevant

Users were also asked if they had experienced more number of hits than that of the one they had considered most relevant, did they found such documents still better relevant. Table 14 shows that 148 respondents out of total 150 representing 98.67 per cent expressed positively and said retrieval of documents by CODORS were ranked above the one they considered most relevant and only 2 ( 1.33 per cent) respondents mentioned that retrieval of documents by CODORS were not ranked above the one they considered most relevant.

Table 14. Retrieval of documents by CODORS ranked above the one considered more relevant

| Opinion | No. of respondents | Percentage |
| :---: | :---: | :---: |
| Yes | 148 | 98.67 |
| No | 2 | 01.33 |

### 8.25 Relevance of Recommendations by CODORS Ranked above the Document the User Considered Relevant

User were asked to furnish their opinion on how relevant were the documents that were displayed by CODOR search and ranked above the document that the user considered most relevant. Table 15 presents that 89 (59.33 per cent) respondents opined that the CODORS recommendations ranked above the one considered relevant were more relevant and 59 (39.33 per cent) respondents opined that CODORS recommendations were most relevant and 2 (1.33 per cent) respondents mentioned that the CODORS recommendations were not better relevant.

Table 15. Relevance of CODORS recommendations ranked above the document the user considered relevant

| Opinion | No. of respondents | Percentage |
| :--- | :---: | :---: |
| Most relevant | 59 | 39.33 |
| More relevant | 89 | 59.33 |
| Not relevant | 2 | 01.33 |

## 9. SUMMARY OF FINDINGS USING OPINION SURVEY

The findings of the survey sought by the users about the usability of CODORS recommender system in actual working environment are summarised below:
(i) All (150; 100 per cent) aerospace users of RDL are aware of recommender systems and particularly CODORS.
(ii) All (150; 100 per cent) users use CODORS to search information of their requirement.
(iii) Out of 150 users, who use CODORS, 77 (51.33 per cent) respondents use it once in a week, 39 ( 26 per cent) use it twice in a week, 19 ( 12.67 per cent) use it thrice in a week, 4 ( 2.67 per cent) use it once in two weeks and 8 ( 5.33 per cent) users use it rarely. Remaining 3 ( 2 per cent) users have not responded.
(iv) One hundred forty-eight out of 150 representing 98.67 per cent of the total respondents opined that they did found useful and interesting documents through CODORS search and remaining 2 (1.33 per cent) users have not responded to the query.
(v) One hundred thirty-four out of 150 representing 89.33 per cent of the total respondents have expressed that the hit results from the CODORS search were more than they expected and for remaining 16 (10.67 per cent) respondents the hit results were as expected by them.
(vi) For 72 respondents representing 48 per cent of the total, the retrieved documents were relevant between 51-75 per cent, for 66 ( 44 per cent) users the relevancy of documents ranging between 76-99 per cent, for 11 ( 7.33 per cent) users the relevancy was between 26-50 per cent and for 1 ( 0.67 per cent) user the relevancy of documents retrieved was 100 per cent.
(vii) One hundred twenty-three users representing 82 per cent of the total are of the opinion that the CODORS search is very easy as against 22 ( 14.67 per cent) users who opined that it is moderately easy and for 5 ( 3.33 per cent) users, CODORS search is not easy.
(viii) One hundred forty-eight representing 98.67 per cent of the total users expressed that they never felt frustrated while using CODORS as against 2 (1.33 per cent) users who felt frustrated.
(ix) All (100 per cent) users have been convinced with display of percentage relevance ranking of the results of CODORS search.
(x) All (100 per cent) users expressed that CODORS is useful for finding relevant documents on the subject of their interest.
(xi) All (100 per cent) users opined that CODORS results on the subject of their interest were comprehensive.
(xii) One hundred forty-five users representing 96.67 per cent of the total experienced that they could get hit results from CODORS search through the key terms they used which did not match with terms in the titles
of documents retrieved. The remaining 5 (3.33 per cent) did not experience this situation.
(xiii) The percentage of success rate of retrieved results from CODORS was 50-74 per cent for 93 ( 62 per cent) users, $75-99$ per cent for 35 ( 23.33 per cent) users and between 25-49 per cent for 22 (14.67 per cent) users.
(xiv) All users (100 per cent) searched information using CODORS keeping in mind its highest relevance. In all such cases all (100 per cent) users experienced search output of not only those documents in mind but also additional documents.
(xv) One hundred forty-eight out of 150, representing 98.67 per cent of the total respondents expressed that they obtained documents ranked higher than that of the one they had considered more relevant. Among these 148 users who obtained higher ranking documents, 89 ( 59.33 per cent) expressed that such documents were more relevant, 59 ( 39.33 per cent) said they were most relevant and only 2 ( 1.33 per cent) expressed that there was not much difference in the relevance between the documents ranked higher and the document they considered most relevant.

## 10. CONCLUSIONS

Designed CODORS converts the terms expressed by the user in natural language automatically into subject descriptors, carry on search, rank documents and retrieve. The document ranking is automatically done by the system on the basis of weightages calculated based on the occurrences of number of subject descriptors, which are assigned to each title of the document in the collection. The results are sorted on relative relevance ranking and are presented to the user for maximum utilization of technical resources that are otherwise hidden in the database collection.

The CODORS was put to test by conducting repeated searches using variety of descriptors/key terms relating to general and specialized subject areas in the field of aerospace engineering. The results exhibited that the CODORS search provided many more relevant documents and increased the recall value as compared to general OPAC search. It also revealed those documents that were retrieved for a given query through OPAC search appeared at different places - top, middle, or end of the ranked list of documents generated through the CODORS search for the same query. The system having put for use in the actual environment revealed the encouraging results. The results of the opinion survey covering 150 regular users of DRDL library correlated with the results of the experimental test and found highest
usability as it provided not only expected relevant documents but also more relevant documents giving ranked weightages.

## REFERENCES

1. Harman, D. Ranking algorithms. In Information retrieval: Data structures and algorithms, edited by W.B. Frakes \& R. Baeza-Yates. Prentice-Hall, Englewood Cliffs,1992. pp. 363-92.
2. Nageswara Rao, K. Designing content-based document recommender system for aerospace grey literature. Department of Studies in Library \& Information Science, University of Mysore, Mysore, 2008. (PhD Thesis)
3. Cleverdon, C.W. The effect of variations in relevance assessments in comparative experimental tests of index languages. Cranfield Institute of Technology, Cranfield, UK, 1970.
4. Hildreth, C.R. Accounting for users' inflated assessments of online catalogue search performance and usefulness: An experimental study. Information Research, 2001, 6(2). http:// InformationR.net/ir/62/ paper101.html (accessed on 20.6.11).
5. Salton, Gerard. The SMART retrieval systemexperiments in automatic document processing. Prentice-Hall, Upper Saddle River, NJ, USA,1971.
6. Salton, Gerard. The SMART project in automatic document retrieval. In Proceedings of 14th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, NY, USA, 1991. pp. 356-58.
7. Bulmer, M. Questionnaires, 1. Thousand Oaks, Sage Publications, California, USA, 2004.

## About the Author



Dr K. Nageswara Rao received Masters Degree in Physics in 1986 from Sri Venkateswara University, Tirupati; PGDCA in 1990 from Jawaharlal Nehru Technological University, Hyderabad; Masters Degree in LIS in 1992 from Annamalai University; and PhD from University of Mysore, in 2009. From 1993 to 1995, he worked at the NIC, Hyderabad. During 1995 to 1999, he worked as Scientist at the NPOL, Kochi. Presently, he is Head Knowledge Centre, Defence Research and Development Laboratory, Hyderabad. His research interest, encompass Internet and information technologies for library applications, web mining, design and development of digital libraries and recommender systems, personalisation and alerting services. He has published/presented a number of technical papers in national/ international journals/conferences.
Appendix 1
Comparison of Search Results Pertaining to General OPAC and CODORS

| Search Terms | NOR | CODORS Recommendations |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NDE | DEW | BF | $\begin{gathered} 95- \\ 100 \% \end{gathered}$ | $\begin{gathered} 90- \\ 95 \% \end{gathered}$ | $\begin{aligned} & 85- \\ & 90 \% \end{aligned}$ | $\begin{aligned} & 80- \\ & 85 \% \end{aligned}$ | $\begin{aligned} & 75- \\ & 80 \% \end{aligned}$ | $\begin{aligned} & 70- \\ & 750 \end{aligned}$ | $\begin{aligned} & \hline 65- \\ & 70 \% \end{aligned}$ | $\begin{gathered} 60- \\ 65 \% \end{gathered}$ | $\begin{gathered} 55- \\ 60 \% \end{gathered}$ | $\begin{gathered} 50- \\ 55 \% \end{gathered}$ | $\begin{gathered} 0- \\ 50 \% \end{gathered}$ | TR |
| ROTOR AERODYNAMICS MANEUVERING | 2 | 16 | 6.25 | 31.25 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | 0 | 0 | 0 | 0 | 7 | $\begin{aligned} & 17 \\ & (1) \end{aligned}$ | 85 | 0 | 22905 | 23015 |
| ADVANCED HYPERSONIC AIRCRAFT | 2 | 16 | 6.25 | 43.75 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | $\begin{aligned} & 1 \\ & (1) \end{aligned}$ | 0 | 0 | 0 | 1 | 26 | 286 | 0 | 6300 | 6615 |
| NDT RELIABILITY | 2 | 18 | 5.56 | 33.33 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | 0 | 0 | 6 | 9 | $\begin{gathered} 7 \\ (1) \end{gathered}$ | 11 | 59 | 0 | 15658 | 15751 |
| VHDL MODELING | 2 | 15 | 6.67 | 40.00 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | 0 | 0 | $\begin{gathered} 2 \\ (1) \end{gathered}$ | 3 | 27 | 0 | 326 | 3291 | 27489 | 31139 |
| SEMICONDUCTOR X-RAY DETECTORS ASTRONOMY | 2 | 15 | 6.67 | 33.33 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | 0 | 0 | 0 | 3 | $\begin{gathered} 5 \\ (1) \end{gathered}$ | 0 | 16 | 104 | 11795 | 11924 |
| COMPUTATIONAL FLUID DYNAMICS MISSILE | 3 | 37 | 2.70 | 54.05 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | 0 | $4$ (2) | 7 | 53 | 145 | 1953 | 29524 | 0 | 0 | 31687 |
| PHASED ANTENNA ARRAY SATELLITES | 3 | 23 | 4.35 | 60.87 | $\begin{gathered} 3 \\ (2) \end{gathered}$ | $\begin{gathered} 3 \\ (1) \end{gathered}$ | 12 | 38 | 112 | 448 | 12014 | 0 | 0 | 0 | 0 | 12630 |
| HYPERSONIC VEHICLE MANEUVERING | 3 | 29 | 3.45 | 48.28 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | 0 | 0 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | $\begin{gathered} 4 \\ (1) \end{gathered}$ | 9 | 1344 | 18589 | 0 | 19948 |
| FLEXIBLE MANUFACTURING SYSTEMS | 3 | 22 | 4.55 | 59.09 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 2 \\ (1) \end{gathered}$ | 5 | 34 | 325 | 2845 | 25310 | 0 | 0 | 0 | 28523 |
| ACTIVE VIBRATIONAL CONTROL | 3 | 24 | 4.17 | 62.50 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{gathered} 4 \\ (1) \end{gathered}$ | 22 | 110 | 421 | 5137 | 20715 | 0 | 0 | 0 | 0 | 26411 |
| NDT CFRP | 3 | 22 | 4.55 | 63.64 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{gathered} 4 \\ (1) \end{gathered}$ | 5 | 44 | 241 | 1395 | 12430 | 0 | 0 | 0 | 0 | 14121 |
| COPPER CORROSION | 3 | 26 | 3.85 | 57.69 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | 0 | 0 | 1 | $\begin{aligned} & 11 \\ & (1) \end{aligned}$ | 49 | 2361 | 9757 | 0 | 0 | 0 | 12181 |

Note: NOR=Number of OPAC results; NDE=Number of descriptors; $\mathrm{DEW}=$ Descriptor weight; $\mathrm{BF}=$ Boosting factor; TR=Total CODORS recommendations; Values with in brackets indicate number of OPAC results

| Search Terms | NOR | CODORS Recommendations |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NDE | DEW | BF | $\begin{gathered} 95- \\ 100 \% \end{gathered}$ | $\begin{gathered} 90- \\ 95 \% \end{gathered}$ | $\begin{gathered} 85- \\ 90 \% \end{gathered}$ | $\begin{aligned} & 80- \\ & 85 \% \end{aligned}$ | $\begin{aligned} & 75- \\ & 80 \% \end{aligned}$ | $\begin{aligned} & 70- \\ & 75 \% \end{aligned}$ | $\begin{gathered} 65- \\ 70 \% \end{gathered}$ | $\begin{gathered} 60- \\ 65 \% \end{gathered}$ | $\begin{gathered} 55- \\ 60 \% \end{gathered}$ | $\begin{array}{r} 50- \\ 55 \% \end{array}$ | $\begin{gathered} 0- \\ 50 \% \end{gathered}$ | TR |
| SPACE SHUTTLE SOFTWARE RELIABILITY | 3 | 26 | 3.85 | 57.69 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 2 \\ (1) \end{gathered}$ | 12 | 51 | 1697 | 12414 | 0 | 0 | 0 | 14178 |
| SHOCK TUNNEL SCRAMJET | 3 | 40 | 2.5 | 57.50 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 1 | 0 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 4 | 100 | 2719 | 18574 | 0 | 0 | 21401 |
| MISSILE SYSTEM INTEGRATION | 4 | 43 | 2.33 | 62.79 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | $\begin{aligned} & 2 \\ & (1) \end{aligned}$ | $\begin{gathered} 2 \\ (1) \end{gathered}$ | $\begin{aligned} & 10 \\ & (1) \end{aligned}$ | 92 | 37737 | 0 | 0 | 0 | 0 | 37844 |
| PROPULSION TRANSPORTATION SYSTEMS | 4 | 43 | 2.33 | 67.44 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 2 \\ (2) \end{gathered}$ | 3 | $\begin{aligned} & 23 \\ & (1) \end{aligned}$ | 200 | 3029 | 18033 | 0 | 0 | 0 | 0 | 21291 |
| NUMERICAL SIMULATION MISSILE | 4 | 37 | 2.70 | 70.27 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 8 \\ (1) \end{gathered}$ | 229 | 3868 | 18032 | 0 | 0 | 0 | 0 | 0 | 22140 |
| NONLINEAR CONTROL AUTOPILOT | 4 | 39 | 2.56 | 71.79 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{gathered} 5 \\ \text { (2) } \end{gathered}$ | 26 | 529 | 4912 | 11503 | 0 | 0 | 0 | 0 | 0 | 16977 |
| OPTIMAL DISTURBANCE REJECTION | 4 | 34 | 2.94 | 64.71 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 2 \\ (1) \end{gathered}$ | $\begin{aligned} & 45 \\ & (1) \end{aligned}$ | $\begin{aligned} & 138 \\ & (1) \end{aligned}$ | 1502 | 5550 | 11331 | 0 | 0 | 0 | 0 | 18569 |
| ELLIPTICAL ANTENNA | 4 | 27 | 3.70 | 70.37 | $\begin{gathered} 2 \\ \text { (2) } \end{gathered}$ | $\begin{gathered} 3 \\ (1) \end{gathered}$ | 81 <br> (1) | 215 | 894 | 17040 | 0 | 0 | 0 | 0 | 0 | 18235 |
| ADAPTIVE ANTENNA ARRAY GPS | 4 | 34 | 2.94 | 70.59 | $\begin{gathered} 3 \\ (3) \end{gathered}$ | 0 | $\begin{aligned} & 37 \\ & (1) \end{aligned}$ | 139 | 3391 | 19535 | 0 | 0 | 0 | 0 | 0 | 23105 |
| AIRCRAFT ATTITUDE DETERMINATION | 4 | 35 | 2.86 | 74.29 | $\begin{gathered} 5 \\ (4) \end{gathered}$ | 5 | 144 | 706 | 32051 | 0 | 0 | 0 | 0 | 0 | 0 | 32911 |
| KALMAN FILTERING TARGET TRACKING | 4 | 34 | 2.94 | 67.65 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | 0 | $\begin{gathered} 9 \\ (2) \end{gathered}$ | 45 | 1084 | 25411 | 0 | 0 | 0 | 0 | 0 | 26551 |
| COMPUTATIONAL FLUID DYNAMICS AERODYNAMICS | 4 | 39 | 2.56 | 69.23 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{aligned} & 8 \\ & (1) \end{aligned}$ | 112 | 1592 | 19366 | 0 | 0 | 0 | 0 | 0 | 21081 |


| Search Terms | NOR | CODORS Recommendations |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NDE | DEW | BF | $\begin{gathered} 95- \\ 100 \% \end{gathered}$ | $\begin{gathered} 90- \\ 95 \% \end{gathered}$ | $\begin{aligned} & 85- \\ & 90 \% \end{aligned}$ | $\begin{gathered} 80- \\ 85 \% \end{gathered}$ | $\begin{gathered} 75- \\ 80 \% \end{gathered}$ | $\begin{gathered} 70- \\ 75 \% \end{gathered}$ | $\begin{gathered} 65- \\ 70 \% \end{gathered}$ | $\begin{gathered} 60- \\ 65 \% \end{gathered}$ | $\begin{gathered} 55- \\ 60 \% \end{gathered}$ | $\begin{gathered} 50- \\ 55 \% \end{gathered}$ | $\begin{gathered} 0- \\ 50 \% \end{gathered}$ | TR |
| COMPUTATIONAL FLUID DYNAMICS COMPUTERS | 4 | 38 | 2.63 | 68.42 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{gathered} 2 \\ (1) \end{gathered}$ | 69 | 1078 | 25922 | 0 | 0 | 0 | 0 | 0 | 27074 |
| COMPUTED TOMOGRAPHY AIRCRAFT | 4 | 42 | 2.38 | 69.05 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{gathered} 2 \\ (1) \end{gathered}$ | $\begin{aligned} & 11 \\ & (1) \end{aligned}$ | 72 | 885 | 19158 | 0 | 0 | 0 | 0 | 0 | 20130 |
| TRUSS STRUCTURES GENETIC ALGORITHM | 4 | 32 | 3.13 | 68.75 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | 1 | $\begin{gathered} 6 \\ (2) \end{gathered}$ | 114 | 916 | 40578 | 0 | 0 | 0 | 0 | 0 | 41617 |
| BACK-TO-TURN MISSILE AUTOPILOT DESIGN | 4 | 38 | 2.63 | 68.42 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | 0 | $\begin{gathered} 6 \\ (2) \end{gathered}$ | 195 | 2532 | 22493 | 0 | 0 | 0 | 0 | 0 | 25228 |
| THRUSTVECTOR CONTROL AIRCRAFT | 4 | 40 | 2.50 | 60.00 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | 0 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{aligned} & 17 \\ & \text { (2) } \end{aligned}$ | 75 | 911 | 32584 | 0 | 0 | 0 | 33589 |
| SOLID ROCKET MOTOR PROPELLANT SIMULATION | 4 | 40 | 2.50 | 70.00 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | 0 | $\begin{gathered} 7 \\ (2) \end{gathered}$ | 164 | 1717 | 22957 | 0 | 0 | 0 | 0 | 0 | 24847 |
| COMPOSITE ROCKET PROPELLANTS | 5 | 49 | 2.04 | 73.47 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 2 \\ \text { (2) } \end{gathered}$ | $\begin{aligned} & 12 \\ & \text { (2) } \end{aligned}$ | 90 | 14484 | 0 | 0 | 0 | 0 | 0 | 0 | 14589 |
| AIR BREATHING DYNAMICS | 5 | 59 | 1.70 | 67.80 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 4 \\ (3) \end{gathered}$ | 90 | 8115 | 23048 | 0 | 0 | 0 | 0 | 31259 |
| COMMUNICATION SATELLITES ANTENNA | 5 | 39 | 2.56 | 71.79 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 3 \\ (2) \end{gathered}$ | $\begin{aligned} & 23 \\ & \text { (2) } \end{aligned}$ | 175 | 2748 | 16733 | 0 | 0 | 0 | 0 | 0 | 19683 |
| HYDROGEN PROPELLANTS | 5 | 53 | 1.89 | 62.26 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | 0 | 0 | $\begin{gathered} 6 \\ (4) \end{gathered}$ | 24 | 1735 | 13536 | 0 | 0 | 0 | 15302 |
| COMBUSTION MECHANISM PROPELLANTS | 5 | 47 | 2.13 | 70.21 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 2 \\ (1) \end{gathered}$ | $\begin{aligned} & 33 \\ & \text { (2) } \end{aligned}$ | 145 <br> (1) | 530 | 17102 | 0 | 0 | 0 | 0 | 0 | 17813 |
| SUPERSONIC AIRCRAFT TRANSPORT RESEARCH | 5 | 61 | 1.64 | 72.13 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{aligned} & 10 \\ & (2) \end{aligned}$ | 184 | 5587 | 11941 | 0 | 0 | 0 | 0 | 0 | 17725 |


| Search Terms | NOR | CODORS Recommendations |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NDE | DEW | BF | $\begin{gathered} 95- \\ 100 \% \end{gathered}$ | $\begin{gathered} 90- \\ 95 \% \\ 95 \% \end{gathered}$ | $\begin{aligned} & \hline 85- \\ & 90 \% \end{aligned}$ | $\begin{aligned} & 80 \\ & 85 \% \\ & 85 \% \end{aligned}$ | $\begin{aligned} & 75- \\ & 80 \% \end{aligned}$ | $\begin{aligned} & 70 \\ & 75 \% \end{aligned}$ | $\begin{aligned} & 65- \\ & 70 \% \end{aligned}$ | $\begin{gathered} 60- \\ 65 \% \end{gathered}$ | $\begin{gathered} 55- \\ 60 \% \end{gathered}$ | $\begin{gathered} 50- \\ 55 \% \end{gathered}$ | $\begin{gathered} 0- \\ 50 \% \end{gathered}$ | TR |
| OPTIMIZATION COMPUTATIONAL FLUID DYNAMICS | 5 | 43 | 2.33 | 76.74 | $\begin{gathered} 4 \\ (3) \end{gathered}$ | $\begin{aligned} & 22 \\ & \text { (2) } \end{aligned}$ | 476 | 5329 | 21242 | 0 | 0 | 0 | 0 | 0 | 0 | 27073 |
| BOUNDARY LAYER COMPUTATIONAL FLUID DYNAMICS | 5 | 49 | 2.04 | 77.55 | 6 (5) | 19 | 956 | 6687 | 23045 | 0 | 0 | 0 | 0 | 0 | 0 | 30713 |
| BALLISTIC MISSILE INTERCEPTION | 5 | 45 | 2.22 | 75.56 | $\begin{gathered} 4 \\ (4) \end{gathered}$ | 3 | $\begin{aligned} & 21 \\ & (1) \end{aligned}$ | 522 | 26646 | 0 | 0 | 0 | 0 | 0 | 0 | 27196 |
| CFD SOLVER | 5 | 43 | 2.33 | 72.09 | $\begin{gathered} 2 \\ \text { (2) } \end{gathered}$ | 4 | $\begin{aligned} & 123 \\ & \text { (3) } \end{aligned}$ | 1076 | 4954 | 15514 | 0 | 0 | 0 | 0 | 0 | 21673 |
| CLUSTER COMPUTING | 5 | 41 | 2.44 | 78.05 | $\begin{gathered} 8 \\ (5) \end{gathered}$ | 55 | 1086 | 30049 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31198 |
| AIRCRAFT FLIGHT CONTROL SIMULATION | 5 | 47 | 2.13 | 74.47 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{gathered} 7 \\ (2) \end{gathered}$ | $\begin{aligned} & 168 \\ & \text { (1) } \end{aligned}$ | 2039 | 31131 | 0 | 0 | 0 | 0 | 0 | 0 | 33347 |
| MULTIVARIABLE ACTIVE CONTROL | 5 | 50 | 2.00 | 76.00 | $\begin{gathered} 3 \\ (3) \end{gathered}$ | $\begin{gathered} 9 \\ (2) \end{gathered}$ | 557 | 3856 | 31257 | 0 | 0 | 0 | 0 | 0 | 0 | 35682 |
| NDT AIRCRAFT | 5 | 39 | 2.56 | 76.92 | $\begin{gathered} 4 \\ (4) \end{gathered}$ | 7 | $\begin{aligned} & 184 \\ & (1) \end{aligned}$ | 3486 | 15506 | 0 | 0 | 0 | 0 | 0 | 0 | 19187 |
| HWIL SIMULATION MISSILE | 5 | 42 | 2.38 | 76.19 | $\begin{gathered} 4 \\ (4) \end{gathered}$ | $\begin{aligned} & 10 \\ & \text { (1) } \end{aligned}$ | 107 | 2589 | 20118 | 0 | 0 | 0 | 0 | 0 | 0 | 22828 |
| HWIL SIMULATION SYSTEMS | 5 | 36 | 2.78 | 72.22 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | (2) | $\begin{aligned} & 22 \\ & \text { (2) } \end{aligned}$ | 394 | 2422 | 23745 | 0 | 0 | 0 | 0 | 0 | 26586 |
| HELLFIRE MISSILE | 5 | 53 | 1.89 | 69.81 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 1 $(1)$ | $\begin{gathered} 4 \\ (2) \end{gathered}$ | $\begin{aligned} & 12 \\ & (1) \end{aligned}$ | 649 | 36691 | 0 | 0 | 0 | 0 | 0 | 37358 |
| C41 | 8 | 71 | 1.41 | 77.46 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 4 \\ (3) \end{gathered}$ | $\begin{aligned} & 34 \\ & (24 \end{aligned}$ | $9476$ (2) | 38492 | 0 | 0 | 0 | 0 | 0 | 0 | 48007 |


| Search Terms | NOR | CODORS Recommendations |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NDE | DEW | BF | $\begin{gathered} 95- \\ 100 \% \end{gathered}$ | $\begin{gathered} 90- \\ 95 \% \end{gathered}$ | $\begin{gathered} 85- \\ 90 \% \end{gathered}$ | $\begin{gathered} 80- \\ 85 \% \end{gathered}$ | $\begin{aligned} & \text { 75- } \\ & \text { 80\% } \end{aligned}$ | $\begin{gathered} 70- \\ 75 \% \end{gathered}$ | $\begin{gathered} 65- \\ 70 \% \end{gathered}$ | $\begin{gathered} 60- \\ 65 \% \end{gathered}$ | $\begin{gathered} 55- \\ 60 \% \end{gathered}$ | $\begin{aligned} & 50- \\ & 55 \% \end{aligned}$ | $\begin{gathered} 0- \\ 50 \% \end{gathered}$ | TR |
| BATTERIES AIRCRAFT APPLICATIONS | 5 | 39 | 2.56 | 74.36 | $\begin{gathered} 4 \\ (3) \end{gathered}$ | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 48 | $\begin{gathered} 520 \\ (1) \end{gathered}$ | 14971 | 0 | 0 | 0 | 0 | 0 | 0 | 15544 |
| ACCELERATION CONTROL DESIGN | 5 | 43 | 2.33 | 72.09 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 3 \\ (2) \end{gathered}$ | $21$ (2) | 766 | 8995 | 28706 | 0 | 0 | 0 | 0 | 0 | 38492 |
| HOMING MISSILE GUIDANCE LAW | 5 | 42 | 2.38 | 76.19 | $\begin{gathered} 4 \\ (3) \end{gathered}$ | $\begin{aligned} & 40 \\ & \text { (2) } \end{aligned}$ | 900 | 6320 | 20585 | 0 | 0 | 0 | 0 | 0 | 0 | 27849 |
| MECHATRONICS | 6 | 51 | 1.96 | 78.43 | $\begin{gathered} 3 \\ (3) \end{gathered}$ | $\begin{aligned} & 50 \\ & \text { (3) } \end{aligned}$ | 1130 | 50089 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51272 |
| COMBUSTION SOLID ROCKET PROPELLANTS | 6 | 66 | 1.52 | 78.79 | $\begin{gathered} 4 \\ (4) \end{gathered}$ | $\begin{gathered} 5 \\ (1) \end{gathered}$ | $\begin{aligned} & 139 \\ & \text { (1) } \end{aligned}$ | 27205 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27353 |
| RELIABILITY ANALYSIS STRUCTURES | 6 | 62 | 1.61 | 72.58 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{aligned} & 12 \\ & (3) \end{aligned}$ | $\begin{gathered} 459 \\ (1) \end{gathered}$ | 16051 | 40268 | 0 | 0 | 0 | 0 | 0 | 56792 |
| NOZZLE NOISE REDUCTION | 6 | 57 | 1.75 | 68.42 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 1 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{aligned} & 18 \\ & (3) \end{aligned}$ | $\begin{aligned} & 198 \\ & (1) \end{aligned}$ | 10713 | 0 | 0 | 0 | 0 | 0 | 10932 |
| MANUFACTURING COMPOSITE STRUCTURES DESIGN | 6 | 48 | 2.08 | 79.16 | $\begin{gathered} 4 \\ (4) \end{gathered}$ | $\begin{aligned} & 12 \\ & (1) \end{aligned}$ | $\begin{gathered} 1331 \\ \text { (1) } \end{gathered}$ | 32428 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33775 |
| ADAPTIVE CONTROL TRUSS STRUCTURES | 6 | 51 | 1.96 | 78.43 | $\begin{gathered} 6 \\ (4) \end{gathered}$ | $\begin{aligned} & 69 \\ & (1) \end{aligned}$ | $\begin{aligned} & 961 \\ & (1) \end{aligned}$ | 41948 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42984 |
| PITTING CORROSION FATIGUE | 6 | 52 | 1.92 | 76.92 | $\begin{gathered} 2 \\ (1) \end{gathered}$ | $\begin{aligned} & 20 \\ & (4) \end{aligned}$ | $\begin{aligned} & 201 \\ & (1) \end{aligned}$ | 5113 | 14604 | 0 | 0 | 0 | 0 | 0 | 0 | 19940 |
| SOFTWARE SATELLITES | 6 | 49 | 2.04 | 73.47 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | 0 | $\begin{aligned} & 13 \\ & (3) \end{aligned}$ | $\begin{aligned} & 326 \\ & (1) \end{aligned}$ | 54291 | 0 | 0 | 0 | 0 | 0 | 0 | 54632 |
| SPACEBORNE DOPPLER LIDAR | 6 | 59 | 1.69 | 69.49 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | 1 | $\begin{aligned} & 12 \\ & (5) \end{aligned}$ | 373 | 42782 | 0 | 0 | 0 | 0 | 0 | 43169 |


| Search Terms | NOR | CODORS Recommendations |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NDE | DEW | BF | $\begin{gathered} 95- \\ 100 \% \end{gathered}$ | $\begin{gathered} 90- \\ 95 \% \end{gathered}$ | $\begin{aligned} & 85- \\ & 90 \% \end{aligned}$ | $\begin{gathered} 80- \\ 85 \% \end{gathered}$ | $\begin{gathered} 75- \\ 80 \% \end{gathered}$ | $\begin{gathered} 70- \\ 75 \% \end{gathered}$ | $\begin{gathered} 65- \\ 70 \% \end{gathered}$ | $\begin{gathered} 60- \\ 65 \% \end{gathered}$ | $\begin{aligned} & 55- \\ & 60 \% \end{aligned}$ | $\begin{array}{r} 50- \\ 55 \% \end{array}$ | $\begin{gathered} 0- \\ 50 \% \end{gathered}$ | TR |
| UNGUIDED MISSILES | 6 | 55 | 1.82 | 72.72 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{gathered} 2 \\ (1) \end{gathered}$ | $\begin{gathered} 4 \\ (2) \end{gathered}$ | $\begin{aligned} & 33 \\ & (2) \end{aligned}$ | 3467 | 22061 | 0 | 0 | 0 | 0 | 0 | 25568 |
| COMPUTATIONAL FLUID DYNAMICS VISUALIZATION | 7 | 58 | 1.72 | 82.76 | $\begin{aligned} & 10 \\ & (4) \end{aligned}$ | $\begin{aligned} & 125 \\ & (3) \end{aligned}$ | 9678 | 33381 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43194 |
| SURFACE TO AIR MISSILE | 7 | 53 | 1.89 | 79.25 | $\begin{gathered} 3 \\ (3) \end{gathered}$ | $\begin{gathered} 9 \\ (2) \end{gathered}$ | $\begin{aligned} & 112 \\ & (2) \end{aligned}$ | 44867 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 44991 |
| NOZZLE HYPERSONIC WIND TUNNEL | 7 | 72 | 1.39 | 83.33 | $\begin{gathered} 8 \\ (6) \end{gathered}$ | $\begin{aligned} & 220 \\ & (1) \end{aligned}$ | 6805 | 20352 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27385 |
| BAYES RELIABILITY | 7 | 54 | 1.85 | 81.48 | $\begin{gathered} 3 \\ (3) \end{gathered}$ | $\begin{aligned} & 58 \\ & (4) \end{aligned}$ | 7274 | 35654 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42989 |
| SIMULATION VHDL | 7 | 60 | 1.67 | 80.00 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{gathered} 6 \\ (4) \end{gathered}$ | $\begin{aligned} & 348 \\ & (1) \end{aligned}$ | 48162 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48518 |
| AIRCRAFT AUTOPILOT | 7 | 68 | 1.47 | 82.35 | $\begin{aligned} & 10 \\ & (5) \end{aligned}$ | $\begin{aligned} & 143 \\ & \text { (2) } \end{aligned}$ | 11063 | 29541 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40757 |
| CAD MEMS | 7 | 55 | 1.82 | 78.18 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{aligned} & 11 \\ & (4) \end{aligned}$ | $\begin{aligned} & 407 \\ & \text { (2) } \end{aligned}$ | 46989 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47408 |
| MISSILE SYSTEM SIMULATION | 8 | 72 | 1.39 | 84.72 | $\begin{aligned} & 12 \\ & (7) \end{aligned}$ | $\begin{aligned} & 357 \\ & (1) \end{aligned}$ | 45636 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 46005 |
| SPACE PROPULSION ROCKET | 8 | 82 | 1.22 | 80.49 | $\begin{gathered} 3 \\ (3) \end{gathered}$ | $\begin{aligned} & 27 \\ & (4) \end{aligned}$ | $\begin{aligned} & 566 \\ & (1) \end{aligned}$ | 29232 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29828 |
| GUIDANCE BALLISTIC MISSILE | 8 | 68 | 1.47 | 80.88 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{gathered} 7 \\ (5) \end{gathered}$ | $\begin{aligned} & 866 \\ & (1) \end{aligned}$ | 36123 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36998 |
| MISSILE INTERCEPTION | 8 | 68 | 1.47 | 83.82 | $\begin{gathered} 6 \\ (6) \end{gathered}$ | $\begin{aligned} & 49 \\ & (2) \end{aligned}$ | 38538 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38593 |


| Search Terms | NOR | CODORS Recommendations |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NDE | DEW | BF | $\begin{gathered} 95- \\ 100 \% \end{gathered}$ | $\begin{aligned} & 90- \\ & 95 \% \end{aligned}$ | $\begin{aligned} & \text { 85- } \\ & 90 \% \end{aligned}$ | $\begin{aligned} & 80- \\ & 85 \% \end{aligned}$ | $\begin{aligned} & 75- \\ & 80 \% \end{aligned}$ | $\begin{gathered} 70- \\ 75 \% \end{gathered}$ | $\begin{gathered} \text { 65- } \\ 70 \% \end{gathered}$ | $\begin{gathered} 60- \\ 65 \% \end{gathered}$ | 5560\% | $\begin{gathered} 50- \\ 55 \% \end{gathered}$ | $\begin{gathered} \hline 0- \\ 50 \% \end{gathered}$ | TR |
| RAPID PROTOTYPING LASER | 8 | 83 | 1.20 | 74.70 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | $\begin{gathered} 5 \\ (4) \end{gathered}$ | $129$ <br> (3) | 40503 | 0 | 0 | 0 | 0 | 0 | 0 | 40638 |
| RAPID PROTOTYPING SIMULATION | 8 | 71 | 1.41 | 84.51 | $\begin{gathered} 8 \\ (7) \end{gathered}$ | $633$ <br> (1) | 56735 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57376 |
| DETECTION CORROSION AIRCRAFT STRUCTURES | 8 | 83 | 1.20 | 83.13 | 16 <br> (6) | 98 <br> (2) | 10330 | 40709 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51153 |
| MEMS AEROSPACE | 8 | 69 | 1.45 | 85.51 | $\begin{gathered} 9 \\ (7) \end{gathered}$ | $275$ <br> (1) | 42046 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42330 |
| FLIGHT PROPELLANT PRODUCTION | 9 | 69 | 1.45 | 84.06 | $7$ (4) | $133$ <br> (5) | 16147 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16287 |
| ATTITUDE DETERMINATION GLOBAL POSITIONING SYSTEM | 9 | 71 | 1.41 | 81.70 | $\begin{gathered} 4 \\ (4) \end{gathered}$ | 25 <br> (2) | $1764$ <br> (3) | 48480 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50273 |
| COMPOSIT SOLID PROPELLANTS | 9 | 89 | 1.12 | 85.39 | $9$ (7) | 114 <br> (2) | 28132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28255 |
| MISSILE NONLINEAR AUTOPILOT | 9 | 83 | 1.20 | 86.75 | $54$ (9) | 4296 | 26951 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31301 |
| ROCKET BOOSTERS | 9 | 91 | 1.10 | 74.73 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | 0 | 3 <br> (3) | $37$ <br> (5) | 41965 | 0 | 0 | 0 | 0 | 0 | 0 | 42006 |
| AGILE MANUFACTURING | 9 | 70 | 1.43 | 85.71 | 11 <br> (6) | $293$ <br> (3) | 27205 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27509 |
| SOFTWARE RELIABILITY ANALYSIS | 9 | 79 | 1.27 | 82.28 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | 23 <br> (5) | $2149$ <br> (2) | 41611 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43785 |
| HIGH ANGLE OF ATTACK MISSILES | 9 | 98 | 1.02 | 81.63 | $\begin{gathered} 3 \\ (2) \end{gathered}$ | $35$ (4) | $1780$ <br> (3) | 38903 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40721 |
| HARDW ARE-IN-LOOP SIMULATION MISSILE | 9 | 73 | 1.37 | 84.93 | 10 <br> (7) | 245 <br> (2) | 31797 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32052 |


| Search Terms | NOR | CODORS Recommendations |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NDE | DEW | BF | $\begin{gathered} 95- \\ 100 \% \end{gathered}$ | $\begin{aligned} & 90- \\ & 95 \% \end{aligned}$ | $\begin{aligned} & 85- \\ & 90 \% \end{aligned}$ | $\begin{aligned} & 80- \\ & 85 \% \end{aligned}$ | $\begin{aligned} & 75- \\ & 80 \% \end{aligned}$ | $\begin{aligned} & 70- \\ & 75 \% \end{aligned}$ | $\begin{aligned} & \text { 65- } \\ & 70 \% \end{aligned}$ | $\begin{aligned} & 60- \\ & 65 \% \end{aligned}$ | $\begin{aligned} & 55- \\ & 60 \% \end{aligned}$ | $\begin{gathered} 50- \\ 55 \% \end{gathered}$ | $\begin{gathered} 0- \\ 50 \% \end{gathered}$ | TR |
| HYPERSONIC AIR BREATHING PROPULSION | 10 | 105 | 0.95 | 81.90 | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $12$ <br> (5) | 997 <br> (2) | $41514$ <br> (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42525 |
| SATELLITE TRACKING CONTROL | 10 | 83 | 1.20 | 87.95 | $\begin{gathered} 40 \\ (10) \end{gathered}$ | 11758 | 38962 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50760 |
| GPS NAVIGATION SATELLITES | 10 | 89 | 1.12 | 87.64 | 17 <br> (9) | $2951$ <br> (1) | 47221 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50189 |
| MULTISENSOR <br> MULTITARGET TRACKING | 10 | 69 | 1.45 | 85.51 | $13$ (6) | 429 <br> (4) | 40699 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41141 |
| INCOMPRESSIBLE NAVIERSTOKES FLOW | 10 | 92 | 1.09 | 84.78 | $11$ <br> (5) | $1002$ <br> (5) | 34844 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 35857 |
| GRID COMPUTING | 10 | 97 | 1.03 | 86.60 | 79 <br> (8) | 3240 <br> (2) | 41395 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 44714 |
| SAFETY MANAGEMENT SYSTEM | 10 | 68 | 1.47 | 85.29 | $13$ (5) | $370$ <br> (5) | 30563 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30946 |
| HYPERSONIC WIND TUNNELS | 10 | 102 | 0.98 | 84.31 | $\begin{gathered} 4 \\ (4) \end{gathered}$ | $150$ (6) | 48432 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48586 |
| MISSILE PROPULSION | 11 | 119 | 0.84 | 87.39 | $8$ (6) | $973$ <br> (5) | 42138 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43119 |
| COMPUTATIONAL FLUID DYNAMICS MODELING | 11 | 125 | 0.80 | 85.60 | $4$ (3) | $407$ <br> (8) | 63667 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 64078 |
| RELIABILITY COMPOSITE STRUCTURES | 11 | 109 | 0.92 | 84.40 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{aligned} & 135 \\ & (9) \end{aligned}$ | 65838 <br> (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 65974 |
| STRUCTURAL ANALYSIS AIRCRAFT | 11 | 103 | 0.97 | 88.35 | $\begin{gathered} 91 \\ (10) \end{gathered}$ | 16400 (1) | 39046 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55537 |
| HIGHTC SUPERCONDUCTIVITY | 11 | 105 | 0.95 | 80.00 | 1 <br> (1) | $\begin{gathered} 3 \\ (2) \end{gathered}$ | $156$ <br> (7) | $32942$ <br> (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36102 |


| Search Terms | NOR | CODORS Recommendations |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NDE | DEW | BF | $95-$ | $\begin{gathered} \hline 90- \\ 95 \% \end{gathered}$ | $\begin{aligned} & \hline 85- \\ & 90 \% \end{aligned}$ | $\begin{gathered} \hline 80- \\ 85 \% \end{gathered}$ | 75- 80\% | $\begin{aligned} & 70- \\ & 75 \% \end{aligned}$ | $\begin{aligned} & \text { 65- } \\ & 70 \% \end{aligned}$ | $\begin{gathered} 60 \\ 65 \% \\ 65 \end{gathered}$ | $\begin{gathered} 55- \\ 60 \% \end{gathered}$ | $\begin{gathered} 50- \\ 55 \% \end{gathered}$ | $\begin{gathered} 0- \\ 50 \% \end{gathered}$ | TR |
| HYPERSONIC SHOCK TUNNEL | 11 | 104 | 0.96 | 87.50 | $\begin{gathered} 14 \\ (10) \end{gathered}$ | $2867$ (1) | 40662 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43543 |
| NUMERICAL SIMULATION COMPUTATIONAL FLUID DYNAMICS | 12 | 124 | 0.81 | 88.71 | $\begin{gathered} 93 \\ \text { (12) } \end{gathered}$ | 10934 | 15032 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26059 |
| micro AIR VEHICLES | 12 | 106 | 0.94 | 86.68 | $\begin{gathered} 36 \\ (11) \end{gathered}$ | $12716$ (1) | 41271 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54023 |
| HYPERSONIC FLIGHT CONTROL | 12 | 103 | 0.97 | 88.35 | $\begin{gathered} 52 \\ (11) \end{gathered}$ | $13434$ (1) | 32309 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45795 |
| AIRCRAFT MANUFACTURING | 12 | 112 | 0.89 | 89.29 | $\begin{aligned} & 108 \\ & (11) \end{aligned}$ | $55700$ (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55808 |
| GUIDED MUNITIONS | 13 | 114 | 0.88 | 90.35 | $\begin{gathered} 53 \\ (12) \end{gathered}$ | $65365$ <br> (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 65418 |
| AEROSPACE PROPULSION | 13 | 114 | 0.88 | 89.47 | $\begin{gathered} 22 \\ (12) \end{gathered}$ | $55449$ (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55471 |
| AIRCRAFT FLIGHT DYNAMICS | 13 | 117 | 0.85 | 88.89 | $\begin{gathered} 74 \\ (12) \end{gathered}$ | $\begin{gathered} 15830 \\ \text { (1) } \end{gathered}$ | 37966 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 53870 |
| SIMULATION FLIGHT DYNAMICS | 13 | 124 | 0.81 | 84.68 | $\begin{gathered} 1 \\ (1) \end{gathered}$ | $\begin{aligned} & 103 \\ & (11) \end{aligned}$ | $\begin{gathered} 72079 \\ (1) \end{gathered}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72183 |
| MISSILE AUTOPILOT DESIGN CONTROL | 13 | 115 | 0.87 | 87.83 | $\begin{aligned} & 17 \\ & (8) \end{aligned}$ | $\underset{(5)}{6418}$ | 41483 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47918 |
| ADAPTIVE VIBRATION CONTROL STRUCTURES | 13 | 114 | 0.88 | 85.96 | $\begin{gathered} 4 \\ (3) \end{gathered}$ | $\begin{aligned} & 1653 \\ & (10) \end{aligned}$ | 60431 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 62088 |
| CORROSION RESISTANT COATINGS | 13 | 150 | 0.67 | 88.67 | $\begin{aligned} & 11 \\ & (9) \end{aligned}$ | $\begin{gathered} 4607 \\ (4) \end{gathered}$ | 44764 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49382 |
| FLIGHT CONTROL SOFTWARE | 14 | 107 | 0.93 | 89.72 | $\begin{aligned} & 154 \\ & (12) \end{aligned}$ | $60451$ (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60605 |


| Search Terms | NOR | CODORS Recommendations |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NDE | DEW | BF | $\begin{gathered} 95- \\ 100 \% \end{gathered}$ | $\begin{aligned} & \text { 90- } \\ & 95 \% \end{aligned}$ | $\begin{aligned} & 85- \\ & 90 \% \end{aligned}$ | $\begin{aligned} & 80- \\ & 85 \% \end{aligned}$ | $\begin{aligned} & 75- \\ & 800 \end{aligned}$ | $\begin{aligned} & 70- \\ & 75 \% \end{aligned}$ | $\begin{gathered} \text { 65- } \\ 70 \% \end{gathered}$ | $\begin{aligned} & 60- \\ & 65 \% \end{aligned}$ | $\begin{gathered} 55- \\ 60 \% \end{gathered}$ | $\begin{aligned} & 50 \\ & 55 \% \\ & 55 \end{aligned}$ | $\begin{gathered} 0- \\ 50 \% \end{gathered}$ | TR |
| PROBABILISTIC STRUCTURAL ANALYSIS | 14 | 139 | 0.72 | 89.21 | $\begin{gathered} 29 \\ (11) \end{gathered}$ | $\begin{gathered} 20907 \\ (3) \end{gathered}$ | 39686 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60622 |
| fatigue life ASSESSMENT | 14 | 137 | 0.73 | 90.51 | $\begin{aligned} & 324 \\ & (13) \end{aligned}$ | $\begin{gathered} 57357 \\ (1) \end{gathered}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57681 |
| fatigue alrframe | 14 | 144 | 0.69 | 87.50 | $\begin{aligned} & 22 \\ & (4) \end{aligned}$ | $\begin{aligned} & 4256 \\ & (10) \end{aligned}$ | 55803 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60081 |
| FLIGHT SIMULATION SOFTWARE | 14 | 107 | 0.93 | 87.85 | $\begin{aligned} & 10 \\ & (6) \end{aligned}$ | $\begin{gathered} 4702 \\ (8) \end{gathered}$ | 57158 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 61870 |
| LYAPUNOV EQUATIONS | 14 | 103 | 0.97 | 88.35 | $\begin{aligned} & 40 \\ & (8) \end{aligned}$ | $13700$ (6) | 31946 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45686 |
| AIRC RAFT DRAG | 15 | 157 | 0.64 | 89.81 | $\begin{gathered} 23 \\ (11) \end{gathered}$ | $\begin{gathered} 59747 \\ (4) \end{gathered}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59770 |
| ROBOT SOFTWARE | 15 | 119 | 0.84 | 89.92 | $\begin{gathered} 197 \\ (11) \end{gathered}$ | $69884$ (4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 70081 |
| MISSILE AEROD YNAMICS | 16 | 164 | 0.61 | 87.80 | $\begin{aligned} & 13 \\ & (5) \end{aligned}$ | $\begin{aligned} & 3239 \\ & (11) \end{aligned}$ | 55762 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59014 |
| SOLID PROPELLANT ROCKET MOTORS | 16 | 117 | 0.57 | 90.96 | $\begin{gathered} 55 \\ (15) \end{gathered}$ | $\begin{gathered} 71592 \\ \text { (1) } \end{gathered}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 71647 |
| AIRCRAFT FLIGHT CONTROL SYSTEMS | 16 | 159 | 0.63 | 88.05 | $\begin{gathered} 3 \\ \text { (3) } \end{gathered}$ | $\begin{gathered} 3848 \\ (13) \end{gathered}$ | 71140 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 74991 |
| SAFETY SPACE SYSTEMS | 16 | 142 | 0.70 | 87.32 | $\begin{gathered} 3 \\ (3) \end{gathered}$ | $\begin{aligned} & 700 \\ & (13) \end{aligned}$ | 45193 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45896 |
| UNSTEADY ROTOR AERODYNAMICS | 17 | 147 | 0.68 | 89.80 | $\begin{aligned} & 132 \\ & (11) \end{aligned}$ | $58736$ <br> (6) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 58868 |
| VIRTUAL MANUFACTURING | 18 | 171 | 0.58 | 91.81 | $\begin{aligned} & 201 \\ & (18) \end{aligned}$ | 71778 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 71979 |

# Designing Content-based Document Recommender System for Aerospace Grey Literature 

## (Questionnaire for Users/Readers)

Investigator: K. Nageswara Rao Supervisor: Prof. V.G. Talw ar

1. Name \& Designation : $\qquad$
2. Belongs to: $\qquad$
3. How familiar are you with Online Public Access Catalogs of libraries?Not very familiar Familiar
4. What is your experience about matching of key terms when you entered into OPAC while searching for docum ents of your interest?
$\square$ Got $100 \%$ matchingMatching between 75-99\%
$\square$ Matching between 50-74\%
Matching between 25-49\%
$\square$ Matched below 24\%
5. When you got hits were the references ranked in the order of relevance?No
6. In OPAC, did you get hits for the key terms that did not match?Yes No
7. Other than OPACs, have you heard of 'Filtering Systems' for identifying relevant information?
8. Have you heard of 'Recommender Systems' for identifying relevant information?Yes
No
9. Are you aware of Thes aurus and its importance in information retrieval?Yes
10. Are you aware of concept-based searching?Yes
11. Are you aware of CODORS?
Yes
12. Have you ever used CODORS to search information of your requirement?YesNo
13. If you have used CODORS, how frequently you have searched using COD ORS?DailyThrice in a weekTwice in a week
Once in a weekOnce in 2 weeksRalely
14. While using CODORS, did your search find anything useful and interesting?
$\square$ Yes
No
15. What was the result of hits from your CODORS search?It was what I expectedMore than what I expectedLess than what l expected
16. When you used CODORS, how relevant were the hits?Not relevant
$\square<25 \%$ relevant
Between 26-50\% relevant
Between 51-75 \% relevant
Between 76-99\% relevant
100\% relevant
17. How easy is it to search CODORS?
$\square$ Not easy $\square$ Moderately easy
Easy to some extent Very easy
18. Did you fee frustrated while using CODORS?
Yes
$\square$ No
19. Are you convinced with the display of percentage relevance ranking of results in CODORS? $\square$ Yes $\square$ No
20. Is CODORS useful for finding relevant articles on a particular subject? $\square$ YesNo
21. Are CODORS results comprehensive on a particular subject your interest?
$\qquad$ YesNo
22. In CODORS, did you get hits for the key terms that did not match titles?Yes
23. If yes, what was the percentage of such success?
$\square<25 \% \quad \square$ Between 25-49\%
$\square$ Between $50-74 \% \quad \square$ Between $75-99 \%$
24. Did you search for documents of your interest keeping in mind its highest relevance?
$\square$ Yes
No
25. In such cases, did you get more references in ranked order in addition to the one you were looking for?
$\square$ Yes
$\square$ No
26. If yes, were the other documents ranked above the one you considered more relevant? $\square$ Yes
$\square$ No
27. If yes, how did you find such documents, which were tanked above the document you considered relevant?
$\square$ Most relevant
$\square$ Not much difference
