Effect of Sintering Time on Dielectric and Piezoelectric Properties of Lanthanum Doped Pb(Ni1/3Sb2/3)-PbZrTiO3 Ferroelectric Ceramics

C. M. Lonkar, D. K. Kharat, H. H. Kumar, Sahab Prasad, K. Balasubramanian

Abstract


produce electrical output in response to ambient pressures, vibrations, movements etc. In the present studies, sintering time for composition Pb0.98La0.02(NiSb)0.05[(Zr0.52Ti0.48)0.995]0.95O3 (La-PNS-PZT) was optimised to achieve properties suitable for power harvesting. Composition was processed through mixed oxide route and sintered at 1270 °C for 20 min, 40 min, 60 min, 80min and 100 min. XRD pattern indicated the presence of both, ferroelectric tetragonal and ferroelectric rhombohedral perovskite phases. The optical photographs shown the uniform and dense microstructure for the samples sintered for 60 min, resulted into optimum piezoelectric charge coefficient, voltage coefficient, electromechanical coupling coefficient and figure of merit. Power harvesting capabilities in response to impact of stainless steel ball (8.25 gm) from 150 mm height were evaluated and compared with PZT type 5A. La-PNS-PZT produced batter electrical output (5.11 W, 71.13 μJ) across the matching load resistance of 4000 Ω and 2.08 W maximum power and 20.79 μJ energy by PZT type 5A disc across the matching load resistance of 1000 Ω.

Defence Science Journal, 2013, 63(4), pp.418-422, DOI:http://dx.doi.org/10.14429/dsj.63.4866


Keywords


Power harvesting, energy harvesting, PNS-PZT ceramics, sintering time effect, piezoelectric

Full Text: Full Text : [HTML] [PDF] [ePub]



CC License Except where otherwise noted, the Articles on this site are licensed under Creative Commons License: CC Attribution-Noncommercial-No Derivative Works 2.5 India

Copyright © 2014, Defence Scientific Information & Documentation Centre (DESIDOC), All Rights Reserved.