SHEAR FLOW OF AN ELASTICO-VISCOUS COMPRESSIBLE FLUID PAST A POROUS FLAT PLATE

S. P. GULATTI & W. KHAN

University of the West Indies, Trinidad, W.I.

(Received 6 June 1968; revised 24 August 1968)

Shear flow of an elasto-viscous compressible liquid past a porous flat plate has been studied and a perturbed solution has been obtained, assuming the elastic number to be small. The variations in the axial velocity have been investigated through graphs. The skin friction and the rate of heat transfer at the plate are found to be not affected by the elasticity of the liquid. The displacement thickness and the normal stress difference have also been studied.

The problem of shear flow of a viscous compressible fluid past a porous flat plate has been studied by Young1. Gupta2 has extended the same problem to an Oldroyd type elasto-viscous compressible fluid possessing a single relaxation time parameter.

In the present paper, a perturbed solution has been obtained for the same flow problem taking Walters liquid B' which possesses a very short memory and is governed by the constitutive equations3:

$$p' = 2 \eta_0 e + 2 k_0 \frac{\delta}{\delta t} e^{(1)ik}$$

where $\eta_0 = \left[\int_0^\infty N(\tau) d\tau \right]$ is the limiting viscosity at small rates of shear, $k_0 = \int_0^\infty \tau N(\tau) d\tau$ is the short memory coefficient; $N(\tau)$ being the relaxation spectrum as introduced by Walters4. p'^{ik} is the partial stress tensor and the rate of strain rate tensor $\frac{\delta}{\delta t} e^{(1)ik}$ is defined as

$$\frac{\delta}{\delta t} e^{(1)ik} = \frac{\partial}{\partial t} e^{(1)ik} + \epsilon_{ikj} e^{(1)ij} - \epsilon_{ijk} e^{(1)ij} - \epsilon_{ijk} e^{(1)ik}$$

where the strain rate tensor $e^{(1)ik}$ is given by

$$e^{(1)ik} = \frac{1}{2} \left[w_{ik} + w_{ki} - \frac{2}{3} \epsilon_{ij} \right]$$

This liquid is a valid approximation of Walters4 liquid B', taking very short memory into account so that terms involving $\int_0^\infty N(\tau) d\tau (\eta \gg 2)$ have been dropped out.

Implicit in the derivation of (1) is also the fact that second order terms in k_0 have been neglected.

205
FORMULATION AND SOLUTION OF THE PROBLEM

Taking \(x\)-axis along the plate and \(y\)-axis normal to it, the equations of momentum, continuity, energy (neglecting elasto-viscous dissipation) and state respectively are

\[
\rho \left\{ u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right\} = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\lambda \Delta \right) + \frac{\partial p'(xx)}{\partial x} + \frac{\partial p'(xy)}{\partial y}
\]

\[
\rho \left\{ u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right\} = -\frac{\partial p}{\partial y} + \frac{\partial}{\partial y} \left(\lambda \Delta \right) + \frac{\partial p'(yx)}{\partial x} + \frac{\partial p'(yy)}{\partial y}
\]

\[
\frac{\partial}{\partial x} \left(\rho \ u \right) + \frac{\partial}{\partial y} \left(\rho \ v \right) = 0
\]

\[
\rho C_p \left\{ u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right\} = u \frac{\partial p}{\partial x} + v \frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left(\lambda_1 \frac{\partial T}{\partial x} \right)
\]

\[
+ \frac{\partial}{\partial y} \left(\lambda_1 \frac{\partial T}{\partial y} \right)
\]

and

\[
p = R \rho \ T^\dagger
\]

where \(p\) is the pressure, \(\Delta = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)\) the dilatation, \(\lambda\) the coefficient of bulk viscosity, \(C_p\) the specific heat at constant pressure and \(\lambda_1\) is the thermal conductivity.

As the plate is infinite, it can be assumed that all the physical variables are functions of \(y\) alone. Then from equation (6) we get

\[
\rho v = \text{const.} = -k \ (\text{say})
\]

Using equations (1), (9) and the fact that the flow conditions depend on \(y\) alone, equations (4), (5) and (7) reduce to

\[
-k \frac{du}{dy} = \frac{d}{dy} \left[\eta_0 \frac{du}{dy} - k_0 \left\{ v \frac{d^2 u}{dy^2} - \frac{7}{3} \frac{dv}{dy} \cdot \frac{du}{dy} \right\} \right]
\]

\[
-k \frac{dv}{dy} = -\frac{dp}{dy} + \frac{d}{dy} \left(\lambda \frac{dv}{dy} \right) + \frac{d}{dy} \left[\frac{4}{3} k_0 \left\{ v \frac{d^2 v}{dy^2} - 2 \left(\frac{dv}{dy} \right)^2 \right\} \right]
\]

and

\[
-k C_p \frac{dT}{dy} = v \frac{dp}{dy} + \frac{d}{dy} \left(\lambda_1 \frac{dT}{dy} \right)
\]

\(\dagger\)From the kinetic theory, it is well known that with a deviation from the Newtonian stress-strain relationship the physical equations also change. However, as a first approximation, the elasticity effect in the physical equations have been neglected.
Following Young, we make the usual boundary layer approximation, viz.

\[\begin{align*}
 u &= 0 \ (1), \\
 v &= 0 \ (5), \\
 y &= 0 \ (5), \\
 x &= 0 \ (1)
\end{align*} \]

\[\lambda = 0 \ (5^2), \quad \eta_0 = 0 \ (5^2) \text{ and } \rho = 0 \ (1) \]

where \(\delta \) is the thickness of the boundary layer.

The above approximations give \(k = 0(\delta) \) and then the left hand side of equation (10) becomes of order (1). Hence in case elasticity of the fluid is to contribute we find that the order of \(k_0 \) is \((\delta^2) \).

With the above complete boundary layer approximations equation (11) gives

\[\frac{dp}{dy} = 0 \ (\delta) \]

(14)

Taking \(\delta \) to be small equation (14) shows that pressure can be assumed to be constant within the boundary layer region. Hence

\[p = \text{const.} = p_\infty \ (\text{say}) \]

(15)

The energy equation (12) becomes

\[-k \ C_p \ \frac{dT}{dy} = \lambda_1 \ \frac{d^2 T}{dy^2} \]

(16)

The equation of state (8) and (9) give

\[\frac{p}{\rho_\infty} = \frac{T_\infty}{T} = \frac{V_\infty}{V} \]

(17)

which shows that \(v \) is proportional to \(T \). Hence we may take

\[v = \alpha \ T \]

(18)

where \(\alpha \) is the constant of proportionality.

From the conditions at the plate it is found that

\[\alpha = -\frac{V}{T_\infty} \]

(19)

and then

\[k = \frac{V \ T_\infty \ \rho_\infty}{T_\infty} \]

(20)
Now, introducing the non-dimensional transformations
\[\bar{v} = \frac{v}{U}, \quad \bar{u} = \frac{u}{U}, \quad y = \frac{n_0}{\rho_\infty} \eta, \quad R_s = \frac{V}{U} \] (suction parameter),
\[k^* = \frac{k_0 U^2 \rho_\infty}{\eta_0} \] (elastic number)
\[\bar{\eta} = \frac{T - T_\infty}{\bar{T}_\infty - T_\infty}, \quad \bar{\theta}_0 = \frac{T_\infty}{T_\infty}, \quad \text{and} \quad \bar{P}_r = \frac{n_0 C_p}{\lambda_1} \] (Prandtl number) \hfill (21)

Equations (16), (18) and (20) respectively reduce to
\[\frac{d^2 \bar{\theta}}{d\bar{\eta}^2} + R_s \bar{P}_r \bar{\theta}_0 \frac{d\bar{\theta}}{d\bar{\eta}} = 0 \hfill (22) \]
\[\bar{v} = -R_s \left[\bar{\theta}_0 + \left(1 + \bar{\theta}_0 \right) \bar{\theta} \right] \hfill (23) \]
and
\[-R_s \frac{du}{d\eta} = \frac{d}{d\eta} \left[\frac{du}{d\eta} - k^* \left\{ -\bar{v} \frac{d^2 u}{d\eta^2} - \frac{7}{3} \frac{dv}{d\eta} \frac{du}{d\eta} \right\} \right] \hfill (24) \]

The modified boundary conditions for \(\theta \) and \(\bar{u} \) become
\[\theta = 1 \quad \text{at} \ \bar{\eta} = 0; \quad \theta \to 0 \quad \text{as} \ \bar{\eta} \to \infty \hfill (25) \]

and
\[\bar{u} = 0 \quad \text{at} \ \bar{\eta} = 0; \quad \bar{u} \to 1 \quad \text{as} \ \bar{\eta} \to \infty \hfill (26) \]

The solution of equation (22) subject to the boundary conditions (25) is obtained as
\[\theta = e^{-R_s \bar{\theta}_0 \bar{P}_r \bar{\eta}} \hfill (27) \]

Hence
\[\bar{v} = -R_s \left\{ \bar{\theta}_0 + \left(1 - \bar{\theta}_0 \right) e^{-R_s \bar{\theta}_0 \bar{P}_r \bar{\eta}} \right\} \hfill (28) \]

Then equation (24) becomes
\[-R_s \bar{\theta}_0 \frac{du}{d\eta} = \frac{d}{d\eta} \left[\frac{du}{d\eta} + k^* R_s \left\{ < \bar{\theta}_0 + \left(1 - \bar{\theta}_0 \right) e^{-R_s \bar{\theta}_0 \bar{P}_r \bar{\eta}} \right\} \right. \]
\[\left. + \frac{7}{3} R_s \bar{P}_r \bar{\theta}_0 \left(1 - \bar{\theta}_0 \right) e^{-R_s \bar{\theta}_0 \bar{P}_r \bar{\eta}} \frac{du}{d\eta} \right\} \hfill (29) \]
Integrating once the above equation, we get:

\[
B - R_s \theta_0 \overline{u} = \left[\frac{\overline{d^2 u}}{d\eta^2} + k^* R_s \left\{ \left(1 - \theta_0 \right) e^{-R_s \theta_0 P_r \eta} - \frac{\overline{d^2 u}}{d\eta^2} \right\} \right. \\
+ \left. \frac{7}{3} R_s P_r \theta_0 \left(1 - \theta_0 \right) e^{-R_s \theta_0 P_r \eta} \frac{\overline{d u}}{d\eta} \right]
\]

(30)

This second degree ordinary differential equation does not admit an exact solution. Now, as implicit in the derivation of the constitutive equations (1) that squares and higher powers of \(k_0\) are neglected, we may take a perturbed solution of the form

\[
\overline{u} = u_0 + k^* u_1 + 0 (k^{*2})
\]

(31)

with

\[
B = B_0 + k^* B_1 + 0 (k^{*2})
\]

(32)

The boundary conditions on \(u_0\) and \(u_1\) become

\[
u_0 = 0 \text{ at } \eta = 0 \; ; \; u_0 \to 1 \text{ as } \eta \to \infty
\]

(33)

and

\[
u_1 = 0 \text{ at } \eta = 0 \; ; \; u_1 \to 0 \text{ as } \eta \to \infty
\]

(34)

Substituting from (31) and (32) in (30) and solving the resulting equations for \(u_0\) and \(u_1\) subject to the above-mentioned conditions, we get

\[
\overline{u} = 1 - e^{-R_s \theta_0 \eta} + k^* R_s \theta_0^2 \left\{ \theta_0 \eta e^{-R_s \theta_0 \eta} + \frac{(1 - \theta_0)}{R_s \theta_0} \cdot \frac{3 - 7P_r}{3P_r} \right\} \\
\left\{ e^{-R_s \theta_0 \eta} - e^{-R_s \theta_0 (1 + P_r) \eta} \right\} \right] + 0 (k^{*2})
\]

(35)

In the incompressible case, however, \(\overline{u}\) and \(\theta\) are obtained as\(^5\)

\[
\overline{u} = \left(1 - e^{-m_1 n} \right)
\]

(36)

and

\[
\theta = e^{-R_s P_r \eta}
\]

(37)

where

\[
m_1 = \frac{(1 - \sqrt{1 - \frac{4 k^* R_s^2}{2 k^* R_s}})}{2 k^* R_s}
\]

(38)
For small value of \(k_0\) equation (36) gives

\[
\bar{u} = 1 - e^{-R_s \eta} + k^* R_o^2 \eta e^{-R_s \eta} + 0 \left(k^* \right)
\]

(39)

DISCUSSION

(1) **Study of the velocity profile**

For rough illustration, Fig. 1 is drawn, keeping \(\theta_0 = \frac{1}{2}\) and \(Pr = 2\) and varying \(R_s\) and \(\eta\) for \(k^* = 0.0\) and 0.01. It shows that for small values of \(\eta\) the elastico-viscous values of \(\bar{u}\) are less than those in the corresponding viscous case for all values of \(R_s\). However, the difference between the elastico-viscous values and the viscous values decreases with an increase in the transverse distance \(\eta\) till it vanishes; the point where the elastico-viscous and the viscous values become equal, shifts towards the plate with an increase in \(R_s\).

Fig. 2 has been drawn for the corresponding incompressible case. It shows that the elastico-viscous values of \(\bar{u}\) in the incompressible case are always greater than the corresponding viscous case values.

(2) **Point of separation**

No point of separation occurs in the viscous case. However, a point of separation exists in the elastico-viscous case for

\[
k^* = \frac{3}{\theta_0 \left[7 Pr (1 - \theta_0) - 3 \right]}
\]

(40)

(3) **Shear stress and the skin friction**

From the momentum equation (4) an explicit expression for the shear stress in the dimensionless form is obtained as

\[
\frac{\tau(x, y)}{\rho U^2} = \theta_0 R_o \left(1 - \bar{u} \right)
\]

(41)

![Fig. 1—Variations of \(\bar{u} vs \eta\) with \(R_o\) increasing in the compressible case \((\theta_0 = \frac{1}{4}, Pr = 2\))](image1)

![Fig. 2—Variations of \(\bar{u} vs \eta\) with \(R_o\) increasing in the incompressible case \((\theta_0 = \frac{1}{4}, Pr = 2\))](image2)
Hence the coefficient of skin friction at the plate becomes

$$\tau_0 = \frac{p(x,y)}{\rho \infty U^2} \bigg|_{\eta = 0} = \theta_0 R_s$$

which is independent of k^*, the elastic number. This result contradicts the findings of Gupta who seems to have calculated the expression incorrectly; for the model considered by him, the same result should have been obtained.

(4) Normal stress difference

The only normal stress difference in non-dimensional form is obtained as

$$\frac{p(xx) - p(yy)}{\rho \infty U^2} = -2 \frac{\delta \bar{v}}{\delta \eta} + 2 k^* \left\{ -\frac{\delta \bar{v}}{\delta \eta} \frac{\delta \bar{v}}{\delta \eta} + \left(\frac{\delta \bar{u}}{\delta \eta} \right)^2 - \frac{4}{3} \left(\frac{\delta \bar{v}}{\delta \eta} \right)^2 \right\}$$

It may be noted with interest that in the compressible case the normal stress difference does not vanish even in the viscous flow case; however, in the incompressible case it exists only in the elasto-viscous case.

(5) Displacement thickness

The displacement thickness δ^* defined as

$$\delta^* = \int_0^\infty (1 - \bar{u}) dy$$

is obtained as

$$\frac{\delta^*}{[\eta_0^* / \rho \infty U]} = \frac{1}{R_s} \left[\frac{1}{\theta_0} + \frac{k^*}{3 (1 + P_r)} \left\{ (7 P_r - 3) - 10 P_r \theta_0 \right\} \right]$$

Elastic elements increase, do not affect or decrease it according as

$$P_r >, = Or < \frac{3}{(7 - 10 \theta_0)}$$

(6) Rate of heat transfer

The rate of heat transfer at the plate is obtained as

$$Q = -\lambda_1 \frac{dT}{dy} \bigg|_{y=0} = C_p V \rho \infty \theta_0 (T_w - T_\infty)$$

A coefficient of heat transfer may then be defined as

$$\frac{Q}{UC_p \rho \infty \theta_0 (T_w - T_\infty)} = R_s$$

which is independent of the elastic number k^*.
However, in the incompressible case the same coefficient may be defined as

\[
\frac{Q}{UC_p \cdot \rho (Tw - T_\infty)} = R_s \tag{48}
\]

It may be pointed out that for the Oldroyd type model Gupta obtained that the rate of heat transfer increases with elasticity. As he remarked himself that although his solution in which \(v \), \(v(x) \) etc. vary as \(\exp(-y/\tau) \), \(\tau \) being the relaxation time parameter, exists, that appeared to be rather artificial.

REFERENCES