ON PARTICULAR SOLUTIONS OF $\nabla^4 \Phi = 0$ AND $E^4 \Phi = 0$.

S. K. RANGARAJAN

Central Electro-chemical Research Institute, Karaikudi

ABSTRACT

The correspondence between the particular solutions of the equations $\nabla^4 \Phi = 0$ and $E^4 \Phi = 0$ are pointed out. The solutions obtained already by Bhatnagar are compared. An elementary discussion of the operational equation $[F_1 F_2 (L_1 + L_2)] \Phi = 0$ is presented. The operations E_v^2, E_v^4, H_v^2 and H_v^4 are introduced.

INTRODUCTION

The Laplacian operator is denoted by ∇^2 and can be identified with $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ in the cartesian system (rectangular).

The operator E^2 stands for $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial \omega^2} - \frac{1}{\omega} \frac{\partial}{\partial \omega}$. Recently, some particular solutions were obtained for the equation $E^4 \Phi = 0$ by Bhatnagar. The correspondence between the particular solution of $\nabla^4 \Phi = 0$ and $E^4 \Phi = 0$ was not brought forth in the paper, or at least was not pointed out and hence some results relating the particular solutions of the biharmonic equation and $E^4 \Phi = 0$ are presented here.

Considering the operator, $E^2 f(x, \omega) := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial \omega^2} - \frac{1}{\omega} \frac{\partial f}{\partial \omega}$ can be transformed into a form involving the operator ∇^2 by the simple substitution:

(1)

$$f = \omega F,$$

$$\frac{\partial f}{\partial \omega} = \omega \frac{\partial F}{\partial \omega} + F \text{ and }$$

$$\frac{\partial^2 f}{\partial \omega^2} = \omega \frac{\partial^2 F}{\partial \omega^2} + 2 \frac{\partial F}{\partial \omega} \text{ and hence }$$

(2)

$$E^2 f = \omega \left(\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial F}{\partial \omega} - \frac{F}{\omega^2} \right)$$

We define ∇^2 in (x, ω, ϕ) coordinate system and express ∇^2 as

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial \omega^2} + \frac{1}{r} \frac{\partial}{\partial \omega} + \frac{1}{\omega^2} \frac{\partial^2}{\partial \phi^2} \text{ and }$$

$$\nabla^2 (F e^{i \phi}) = \left(\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial F}{\partial \omega} - \frac{F}{\omega^2} \right) e^{i \phi}.$$
where F has been assumed to be independent of ϕ.

Recalling the operation of ∇^2 in the (x, ω, ϕ) system (cylindrical polar coordinates) on functions independent of ϕ, we may write,

$$
\nabla^2 (x, \omega) = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega},
$$

It is easily seen that,

$$
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\omega^2} - \frac{1}{\omega} \frac{\partial}{\partial \omega} \right) \left(\omega F \phi \right) = \omega \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega} - \frac{1}{\omega^2} \frac{\partial^2}{\partial \phi^2} \right) \left(F \phi \right)
$$

and hence,

$$
E^2 f = E^2 (\omega F) = \omega \left(\nabla^2 (x, \omega) - 1/\omega^2 \right) F.
$$

To obtain a particular solution of the equation $E^2 f = 0$, one only needs a particular solution of $\nabla^2 \phi = 0$, where ∇^2 is the Laplacian operator in (x, ω, ϕ) system and the particular solution Φ depending on "$\phi" as \omega F \phi \Phi. If such a solution is found, f can be written as ωF;

[Note: The operator E^2 is independent of ϕ]

$$
E^4 f = E^2 (E^2 f)
$$

writing $f = \omega F \phi \Phi$

$$
E^4 (\omega F \phi \Phi) = \omega \Phi E^2 (E^2 (\omega F))
$$

Also, $\omega \nabla^2 (F \phi \Phi) = E^2 (\omega F \phi \Phi)$

consequently

$$
E^4 (\omega F \phi \Phi) = E^2, E^2 (\omega F \phi \Phi)
$$

$$
= E^2, \omega (\nabla^2 x, \omega - 1/\omega^2) \cdot F \phi \Phi
$$

$$
= \omega (\nabla^2 x, \omega - 1/\omega^2) F \phi \Phi
$$

$$
= \omega \nabla^4 F \phi \Phi \text{ and hence}
$$

$$
\omega \nabla^4 (F \phi \Phi) = E^4 (F \phi \Phi) \ [\nabla^2 \equiv \text{Three dimensional Laplacian operator}]
$$

To obtain a particular solution of $E^4 \phi = 0$, one can search for a particular solution of $\nabla^4 \phi = 0$ of the form $\Phi = F \phi \Phi$ (F independent of ϕ) and 'convert it' to a solution of $E^4 \phi = 0$ by multiplying F by ω.
To summarise:

consider the operators

\[E^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial \omega^2} - \frac{1}{\omega} \frac{\partial}{\partial \omega} \right) (x, \omega) \]

and

\[\nabla^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega} + \frac{1}{\omega^2} \frac{\partial^2}{\partial \phi^2} \right) (x, \omega, \phi) \]

Assume a solution of the form \(\Phi = F(x, \omega) e^{i\varphi} \) to the equation \(\nabla^2 \Phi = 0 \). Then, a particular solution of \(E^2 \Phi = 0 \) is \(\omega F \); Also if \(F(x, \omega) e^{i\varphi} = \Phi \) is a solution of \(\nabla^4 \Phi = 0 \); \(\omega F = \psi \) is a solution of \(E^4 \psi = 0 \).

ILLUSTRATIONS

Obviously, if \(\Phi \) satisfies the equation \(\nabla^2 \Phi = 0 \) it is a solution of \(\nabla^4 \Phi = 0 \), too.

Assuming the \(\phi \) dependence of \(\Phi = Fe^{i\varphi} \) as that of \(e^{i\varphi} \) we seek the solutions of

\[\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial F}{\partial \omega} - \frac{F}{\omega^2} = 0 \]

It is well known that

\[\cosh \quad \text{mx} \quad \begin{cases} AJ_1(m\omega) + BY_1(m\omega) \end{cases} \]

\[\sinh \]

are among these.

Hence,

\[\phi = \omega \quad \cosh \quad \text{mx} \quad \begin{cases} AJ_1(m\omega) + BY_1(m\omega) \end{cases} \]

\[\sinh \]

are solutions of \(E^2 \Phi = 0 \) and hence of \(E^4 \varphi = 0 \). Also,

\[7(a) \quad \phi = \omega \quad \text{mx} \quad A^1 I_1(m\omega) + B^1 K_1(m\omega) ; \]

\[\sin \]

are solutions of \(E^2 \Phi = 0 \) and \(E^2 \Phi = 0 \).

If \(\omega \) is such that \(E^2 \Phi = f \) where \(f \) is a solution of \(E^2 f = 0 \), \(\Phi \) will be a solution of \(E^4 \Phi = 0 \); Thus we generate some more particular solutions for \(E^4 \Phi = 0 \).

Since the general solution of

\[\frac{d^2 Y}{d\omega^2} + \frac{1}{\omega} \frac{dY}{d\omega} + \left(m^2 - \frac{1}{\omega^2} \right) Y = AJ,(m\omega) + BY_1(m\omega) \]

\[= V(m\omega) \], say,
can be expressed as,

\[J_1(m\omega) \left[C_1 - \int_a^\omega V(mx)Y_1(mx) \, dx \right] + \int_\beta^\omega Y_1(m\omega) \left[C_2 + \int_a^\omega V(mx)J_1(mx) \, dx \right] \]

where \(C_1, \, C_2, \, \alpha \) and \(\beta \) are arbitrary constants, some particular solutions of \(E^4 \Phi = 0 \) take the form as expressed by equation 2.18 in the paper by Bhatnagart.1

Simple manipulations result in the new particular solutions given by equation 2.26 of reference 1. Since

\[
\left(\frac{\partial^2}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega} - \frac{1}{\omega^2} \right) (A\omega + B/\omega) = 0
\]

and

\[
\frac{\partial^2}{\partial x^2} \left(\frac{\partial^2}{\partial x^2} \right) (a + bx + cx^2 + dx^3) = 0
\]

some more solutions of \(\nabla^4 \Phi = 0 \) can be seen to be of the form,

\((a + bx + cx^2 + dx^3) (A\omega + B/\omega) e^{i\theta} \) and hence

\[
(a + bx + cx^2 + dx^3) (A\omega^2 + B) = \Phi
\]

is a solution of \(E^4\varphi = 0 \).

\((a, \, b, \, c, \, d, \, A \) and \(B \) are arbitrary constants)

[cf: equation 2.30 of reference 1]

Also from the solution of

\[
\left(\frac{\partial^2}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega} - \frac{1}{\omega^2} \right) f = A\omega + B/\omega,
\]

it is seen that

\[
[C_1 + (C_2 + C_3 \log \omega) \omega^2 + C_4 \omega^4] (a + bx) \text{ is a solution of } E^4 \Phi = 0.
\]

(equation 2.9 of reference 1).

By similar arguments,

\[
\omega \sin \lambda x \frac{I_1(\lambda \omega)}{K_1(\lambda \omega)}; \quad \omega \cosh \lambda x \frac{J_1(\lambda \omega)}{Y_1(\lambda \omega)}
\]

(11) and

\[
x \omega \sin \lambda x \frac{I_1(\lambda \omega)}{K_1(\lambda \omega)}; \quad x \omega \cosh \lambda x \frac{J_1(\lambda \omega)}{Y_1(\lambda \omega)}
\]

can be proved to be particular solutions (cf: equation 2.39 reference 1)

Polar coordinates:

The correspondence, that has been proved to exist, between the solutions of \(E^4\varphi = 0 \) and \(\nabla^4 \Phi = 0 \) is particularly useful in helping us to choose the proper particular solutions in other systems of coordinates.
Considering, for instance, spherical polar coordinates for which $\nabla^2 \phi$ assumes the form

$$\nabla^2 \phi = \frac{1}{r^2} \left\{ \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \phi}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \phi}{\partial \phi^2} \right\},$$

it may first be pointed out that only those solutions of $\nabla^2 \phi = 0$ or $\nabla^4 \phi = 0$ whose dependence on ϕ is as $e^{i\phi}$ are of interest in the discussion of $E^4 \Phi = 0$.

It may be recalled that a typical solution of $\nabla^2 \Phi = 0$ which is of the form $F(r, \theta) e^{i\phi}$ is given by

$$F = (A r^n + Br^{-n-1}) \left[CP'_n (\mu) + DQ'_n (\mu) \right].$$

The particular solutions of $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) = Ar^n + Br^{-n-1}$

will be of the form $A' r^{n+2} + B' r^{-(n+1)}$ and hence there exist particular solutions of $E^4 \Phi = 0$ which are of the form,

$$\left(\frac{B}{r^n} + A' r^{n+3} + \frac{B'}{r^{n+2}} + Ar^{n+1} \right) \left\{ a_1 P'_n (\mu) + b_1 Q'_n (\mu) \right\} \left(r \sqrt{1-\mu^2} \right).$$

(cf: equation 3.19, reference 1)

In the degenerate case, $n=0$, we may easily prove that the solutions will be

$$B + A' r^3 + B' r^2 + Ar \left(a_1 + a_2 \mu \right).$$

It can be shown that a solution of $\nabla^4 \Phi = 0$

can be given in the form $r^m f(\mu)$ where f is a solution of

$$\left[\frac{\partial}{\partial \mu} \left(1 - \mu^2 \right) \frac{\partial}{\partial \mu} \right] + (m-2) (m-1) - \frac{1}{1-\mu^2} \left\{ \frac{\partial}{\partial \mu} \left[(1 - \mu^2) \frac{\partial}{\partial \mu} \right] \right. $n

$$+ m (m+1) - \frac{1}{1-\mu^2} \right\} f = 0$$

A typical solution will be given by

$$\left\{ \frac{\partial}{\partial \mu} \left((1 - \mu^2) \frac{\partial}{\partial \mu} \right) + m (m+1) - \frac{1}{1-\mu^2} \right\} f = 0$$

which can be expressed as $A P'_m (\mu) + B Q'_m (\mu)$

Also, If

$$\left\{ \frac{\partial}{\partial \mu} \left((1 - \mu^2) \frac{\partial}{\partial \mu} \right) + m (m+1) - \frac{1}{1-\mu^2} \right\} P(\mu) = A_1 P'_{m-2}(\mu) + B_1 Q'_{m-2}(\mu),$$

$$\left\{ r^{m+1} f(\mu) \sqrt{1-\mu^2} \right\} \text{ is a typical solution of } E^4 \phi = 0 \text{ with } f(\mu) \text{ of the form}$$

$$A P'_m (\mu) + B Q'_m (\mu) + A_1 P'_{m-2}(\mu) + B_1 Q'_{m-2}(\mu)$$
If $m=1$, it can be easily shown that the solutions so derived will correspond to those obtained already in equation 3·30* of reference 1.

In the particular case of solving the equation $(L_1 + L_2)^2 \phi = 0$ where the linear differential operators L_1 and L_2 are independent—in the sense that L_1 operates only on $f(\xi_1)$ and L_2 on $\psi(\xi_2)$ where $f(\xi_1)$ and $\psi(\xi_2)$ are arbitrary functions of the coordinates ξ_1 and ξ_2. As an illustration, we may note Laplacian $\nabla^2 (x,\omega)$ in cylindrical coordinates, is of this form

$$\nabla^2 (x,\omega) = L_1 + L_2; \quad L_1 = \frac{\partial^2}{\partial x^2};$$

$$L_2 = \frac{\partial^2}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega};$$

To obtain particular solutions of $(L_1 + L_2)^2 \phi = 0$ i.e. $(L_1^2 + 2 L_1 L_2 + L_2^2) \phi = 0$, we assume ϕ to be of the form $X(\xi_1) Y(\xi_2)$ and dividing the equation by XY, one obtains $\frac{L_1^2(X)}{X} + 2 \frac{L_1(Y)}{X} \cdot \frac{L_2(Y)}{Y} = 0$. This suggests that the solution can be determined by solving for X and Y from

$$L_1 \pm \lambda \quad X = 0 \quad \text{and} \quad (L_2 \mp \lambda) \quad Y = g(\xi_2) \quad \text{where} \quad (L_2 \mp \lambda) \quad g = 0$$
or

$$L_2 \pm \lambda \quad Y = 0 \quad \text{and} \quad (L_1 \mp \lambda) \quad X = f(\xi_1) \quad \text{where} \quad (L_1 \mp \lambda) \quad f = 0$$

where λ is a constant.

Illustrations:

$$L_1 = \frac{\partial^2}{\partial x^2}$$

$$L_2 = \frac{1}{\omega} \frac{\partial}{\partial r} \left(\omega \frac{\partial}{\partial r} \right) - 1/\omega^2$$

If $(L_1 \pm \lambda^2) \quad f = 0$,

$$f(\xi_1) = a \frac{\cos}{\cosh} \lambda X + b \frac{\sin}{\sinh} \lambda X$$

according as the upper or lower sign is chosen. Hence any solution of $(L_1 \mp \lambda) \quad X = f(\xi_1)$ can be expressed as

$$X = \frac{\cos}{\cosh} \lambda x(a_1 + b_1 x) + \frac{\sin}{\sinh} \lambda x(c_1 + d_1 x).$$

If $\lambda = 0$, it can be easily proved that $X = a_1 + b_1 x + c_1 x^2 + d_1 x^3$.

Similarly, if $(L_2 \pm \lambda) \quad Y = 0$,

$$Y = A_1 \frac{I_1}{J_1} (\lambda \omega) + B_1 \frac{K_1}{Y_1} (\lambda \omega) \quad \text{and} \quad (A_1 \omega + B_1/\omega) \quad (\lambda = 0)$$

It may be pointed out here that the solutions $r^m, r^m \mu^2$ are not "new" as given in reference 1, equation (3·30) but are implicitly stated through equations 3·19 and 3·8 of reference 1 for $n=1$. Also refer Appendix.
Hence the particular functions ωXY expressed as

\[I : \omega \left\{ A_1 \frac{I_1}{J_1}(\lambda \omega) + B_1 \frac{K_1}{Y_1}(\lambda \omega) \right\} \left\{ \cos \lambda x (a_1 + b_1 x) + \sin \lambda x (c_1 + d_1 x) \right\} \lambda \neq 0, \]

where \(A_1, B_1, a_1, b_1, c_1, d_1 \) and \(\lambda \) are arbitrary constants and

\[II : \omega \left(A_1 \omega + B_1 \omega \right) \left(a_1 + b_1 x + c_1 x^2 + d_1 x^3 \right), \ (\lambda = 0) \]

are solutions of \(E^4 (\omega XY) = 0 \).

Also, the solution of

\[(L_2 \pm \lambda) Y = \left\{ A_1 \frac{I_1}{J_1}(\lambda \omega) + B_1 \frac{K_1}{Y_1}(\lambda \omega) \right\} \lambda \neq 0 \]

can be proved to be

\[C_1 \frac{I_1}{J_1}(\lambda \omega) + D_1 \frac{K_1}{Y_1}(\lambda \omega) - \left[\frac{I_1}{J_1}(\lambda \omega) \int \omega \frac{K_1}{Y_1}(\lambda \omega) \left\{ A_1 \frac{I_1}{J_1}(\lambda \omega) + B_1 \frac{K_1}{Y_1}(\lambda \omega) \right\} d\omega \right. \]

\[- \frac{K_1}{Y_1}(\lambda \omega) \int \omega \frac{I_1}{J_1}(\lambda \omega) \left\{ A_1 \frac{I_1}{J_1}(\lambda \omega) + B_1 \frac{K_1}{Y_1}(\lambda \omega) \right\} d\omega \]

where \(A_1, B_1, C_1 \) and \(D_1 \) are constants. Hence some solutions of \(E^4(\Phi) = 0 \) are

\[\Phi = \omega XY = \omega \left\{ a_1 \frac{\cos}{\cosh} \lambda x + b_1 \frac{\sin}{\sinh} \lambda x \right\} \delta \left\{ C_1 \frac{I_1}{J_1}(\lambda \omega) + D_1 \frac{K_1}{Y_1}(\lambda \omega) \right\}. \]

III:

\[- \frac{I_1}{J_1}(\lambda \omega) \int \omega \frac{K_1}{Y_1}(\lambda \omega) \left\{ A_1 \frac{I_1}{J_1}(\lambda \omega) + B_1 \frac{K_1}{Y_1}(\lambda \omega) \right\} d\omega \]

\[- \frac{K_1}{Y_1}(\lambda \omega) \int \omega \frac{I_1}{J_1}(\lambda \omega) \left\{ A_1 \frac{I_1}{J_1}(\lambda \omega) + B_1 \frac{K_1}{Y_1}(\lambda \omega) \right\} d\omega \]

For \(\lambda = 0 \), \(\omega XY \) will be of the form,

IV: \((a_1 + b_1 x) \omega \ A_1 \omega + B_1 \omega + C_1 \omega \log \omega + C_2 \omega^3 \)

The solutions I, II, III and IV have already been shown to be solutions of \(E^4 \phi = 0 \) in this paper, equations 7, 8, 9, 10 and elsewhere (reference 1, equations 2.9, 2.18, 2.26 2.31, 2.39 and 2.44)

In case the operator is of the form \(f_1(\xi_1)f_2(\xi_2)(L_1 + L_2) \) where \(L_1 \) and \(L_2 \) are in terms of \(\xi_1 \) and \(\xi_2 \) coordinates only, let us assume a solution of the form \(\frac{x(\xi_1)}{f_1(\xi_1)} \cdot \frac{y(\xi_2)}{f_2(\xi_2)} \) so that

\[f_1(\xi_1)f_2(\xi_2) \left[\frac{y}{f_2} L_1 \left(\frac{x}{f_1} \right) + \frac{x}{f_1} L_2 \left(\frac{y}{f_2} \right) \right] = f_1 y L_1 \left(\frac{x}{f_1} \right) + x f_2 L_2 \left(\frac{y}{f_2} \right) \]

\[f_1 f_2 (L_1 + L_2) \left\{ L_1 \left(\frac{x}{f_1} \right) + x f_2 L_2 \left(\frac{y}{f_2} \right) \right\} = f_1 f_2 \ y L_1 \left[f_1 L_1 \left(\frac{x}{f_1} \right) \right] \]

\[+ f_1 L_1 \left(\frac{x}{f_1} \right) L_2 \left(\frac{y}{f_2} \right) + f_2 L_2 \left(\frac{y}{f_2} \right) L_1 \left(\frac{x}{f_1} \right) + x L_2 \left(f_2 L_2 \left(\frac{y}{f_2} \right) \right) \]
and hence, representing the operator \(f_1 f_2 (L_1 + L_2) \) by \(f^{\beta_2 \xi} \)
\[
\frac{\int f^{\beta_2 \xi} \left\{ \frac{xy}{f_1 f_2} \right\}}{xy} = 0 \text{ implies}
\]
\[
(19) \quad \frac{L_1 \left\{ f_1 L_1 \left(\frac{x}{f_1} \right) \right\} + L_1 (x) L_2(y)}{x} + \frac{L_2(y)}{y} \cdot \frac{f_1 L_1 \left(\frac{x}{f_1} \right)}{x} + \frac{L_2[f_2 L_2(y/f_2)]}{y} = 0
\]

For the special case when \(f_2(\xi_2) = 1 \)
\[
(20) \quad \frac{L_1 \left\{ f_1 \left[L_1 \left(\frac{x}{f_1} \right) \right] \right\}}{x} + \frac{L_2(y)}{y} \left\{ \frac{L_1(x)}{x} + \frac{L_1(x/f_1)}{x/f_1} \right\} + \frac{L_2^2(y)}{y} = 0
\]

It can be seen that the condition \(\frac{L_2(y)}{y} = \lambda \) implies,
\[
(21) \quad \frac{L_1 \left\{ f_1 \left[L_1 \left(\frac{x}{f_1} \right) \right] \right\}}{x} + \lambda \frac{L_1(x)}{x} + \frac{L_1(x/f_1)}{x/f_1} \right\} + \lambda^2 = 0
\]

from which an expression for \(X \) can be derived. If \(\frac{L_1(x)}{x} = a_1 \) and also \(\frac{L_1(x/f_1)}{x/f_1} = a_2 \)
(i.e. if both \(X \) and \(X/f_1 \) are eigen functions of the operator \(L_1 \)), we find that
\[
a_1 a_2 + \frac{L_2(y)}{y} \left\{ a_1 + a_2 \right\} + \frac{L_2^2(y)}{y} = 0
\]
\[
(22) \quad \text{or} \quad (L_2 + a_1) (L_2 + a_2) y = 0
\]

where \(a_1, a_2 \) are constants. This equation can be solved easily for \(Y \) thereafter, and the complete solution thus obtained.

ILLUSTRATION

Spherical coordinates:
\[
L_1 \equiv \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) ; \quad f_1 = 1/r^2
\]
\[
= \theta (\theta + 1) \quad ; \quad \theta = \frac{\partial}{\partial z} \text{ where } z = \log r.
\]

For the operator \(L_1 \), \(r^n \) will be an eigen function with the eigen value \((n^2 + n) \) so that \(r^{n-2} \)
will be an eigen function with the eigen value \((n^2 - 3n + 2) \).

i.e. \(\frac{L_1 \left(r^n \right)}{r^n} = n(n + 1) \) and \(\frac{L_1 \left(r^n/r^2 \right)}{r^{n-2}} = n^2 - 3n + 2; \)

Correspondingly, one can solve (for \(Y \)) the equation
\[
[L_2 + n(n + 1)] [L_2 + (n - 2)(n - 1)] y = 0
\]

Some of the solutions can be,
\[
Y = A_1 P_n'(\mu) + B_1 Q_n'(\mu) \quad \text{and} \quad A_1 P_{n-2}'(\mu) + B_1 Q_{n-2}'.
\]
In particular, for \(n = 2 \)

\[
Y = A_1 P_2' (\mu) + B_1 Q_2' (\mu)
\]

and

\[
(A_1' + B_1' \mu) \sqrt{1 - \mu^2} \text{ or } A_1 \mu \sqrt{1 - \mu^2} \text{ and } (A_1' + B_1' \mu) / \sqrt{1 - \mu^2},
\]

confining to the Legendre function of the first kind. A solution can therefore be written as

\[
A_1 \mu \sqrt{1 - \mu^2} \text{ or } (A_1' + B_1' \mu) / \sqrt{1 - \mu^2}.
\]

Consequently, the solutions for \(E^4 \phi = 0 \) can, hence be expressed as \(r A_1 \mu (1 - \mu^2) \) and \(r (A_1' + B_1' \mu) \).

\(A_1, A_1' \text{ and } B_1' \text{ : arbitrary constants).} \)

Similarly one can derive the solutions corresponding to other powers.

Discussions of a similar nature can be extended to some other operators as well.

Defining \(E_v^2 = \frac{\partial^2}{\partial \omega^2} - \frac{\nu}{\omega} \frac{\partial}{\partial \omega} + \frac{\partial^2}{\partial x^2} \), it can be proved easily that

\[
(23) \ E_v^2 \left(\frac{\nu + 1}{\omega^2} \right) = \omega \frac{\nu + 1}{2} \left\{ \frac{\partial^2}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega} - \frac{(\nu + 1)^2}{4 \omega^2} + \frac{\partial^2}{\partial x^2} \right\}
\]

which corresponds to the operation of the three dimensional Laplacian \(\nabla^2 \) on a function which varies with \(\phi \) as \(e^{i \left(\frac{\nu + 1}{2} \phi \right)} \)

For \(\nu = 1 \), \(E_v^2 \gg E^2 \) discussed in the paper, and \(\frac{\nu + 1}{2} = 1 \); Hence,

\[
(24) \ E_v^2 \left(\frac{\nu + 1}{\omega^2} \ F(\omega, x) e^{i \left(\frac{\nu + 1}{2} \phi \right)} \right) = \omega \frac{\nu + 1}{2} \left(\nabla^2 \left(F e^{i \left(\frac{\nu + 1}{2} \phi \right)} \right) \right)
\]

\[
(24a) \ E^4 \left(\frac{\nu + 1}{\omega^2} \ F(\omega, x) e^{i \left(\frac{\nu + 1}{2} \phi \right)} \right) = \omega \left(\nabla^4 \left(F e^{i \left(\frac{\nu + 1}{2} \phi \right)} \right) \right)
\]

and hence corresponding to a solution of \(\nabla^4 \left(F e^{i \left(\frac{\nu + 1}{2} \phi \right)} \right) = 0 \) with \(F \) independent

\[
\frac{\nu + 1}{2}
\]

\(f \ \phi \), a solution of \(E_v^4 f = 0 \) exists such that \(f = \omega F \). An operator of the form

\[
H_v = \left(\frac{\partial^2}{\partial \omega^2} - \frac{\nu}{\omega} \frac{\partial}{\partial \omega} + \frac{\partial^2}{\partial x^2} - \kappa^2 \right)
\]

will correspond to the Hamiltonian

\[
(25) \ (\nabla^2 - \kappa^2) \text{ since } H_v \left(\frac{\nu + 1}{\omega^2} \ F \right) = \omega \frac{\nu + 1}{2} \left(\nabla^2 - \kappa^2 \right) \left(F e^{i \left(\frac{\nu + 1}{2} \phi \right)} \right)
\]

with \(F \) independent of \(\phi \).

Acknowledgement—The author expresses his sincere thanks to Professor K.S.G. Doss, Director, Central Electrochemical Research Institute, Karaikudi for his keen interest and encouragement.

REFERENCE

APPENDIX

To solve
\[A(1) \left(1 - \mu^2 \right) \frac{d^2}{d\mu^2} \left\{ \left(1 - \mu^2 \right) \mu^2 \right\} + 2a \left(1 - \mu^2 \right) \mu^2 + \left(a - 3 \right) \left(a - 1 \right) \mu = 0 \]

(cf: equation 3·22, Reference 1)

Denote by \(\theta_1 \) and \(\theta_2 \) the operators \(\left(1 - \mu^2 \right) \frac{d^2}{d\mu^2} \) and
\[\left\{ \left(1 - \mu^2 \right) \frac{d^2}{d\mu^2} - 2\mu \frac{d}{d\mu} - \frac{1}{1 - \mu^2} \right\} \]
respectively; By simple calculations, it may be shown that
\[\theta_1 \left\{ N(\mu) \sqrt{1 - \mu^2} \right\} = \sqrt{1 - \mu^2}. \theta_2 \left\{ N(\mu) \right\} \]
so that
\[\theta_1^2 N(\mu) \sqrt{1 - \mu^2} = \theta_1 \left[\sqrt{1 - \mu^2}. \theta_2^2 N(\mu) \right] = \sqrt{1 - \mu^2}. \theta_2^2 N(\mu) \]

Equation A(1) can be transformed into the form
\[A(2) \quad \theta_1^2 \mu + 2a \theta_1 \mu + \left(a - 3 \right) (a - 1) \mu = 0. \]

\(N \sqrt{1 - \mu^2} \) is a solution of A(2), provided \(N \) satisfies the equation,
\[A(3) \quad \left[\theta_2^2 + 2a \theta_2 + \left(a - 3 \right) (a - 1) \right] N = 0. \]

Denoting the roots \((- a \pm \sqrt{4a - 3}) \) of the equation \(x^2 + 2ax + (a - 3)(a - 1) = 0 \)
by \(a_1 \) and \(a_2 \) respectively, we find that
\[
N = A_1 P'_{n-1} (\mu) + B_1 Q'_{n-1} (\mu) \\
+ A_2 P'_{n-3} (\mu) + B_2 Q'_{n-3} (\mu)
\]
where \(3 + n(n - 3) \) has been written for \(a \).

The solution of \((D^2 - 3D + 3) R = aR \)

(cf: equation 3·20, Reference 1)
can be expressed as \(R = C_1 r^n + C_2 r^{-(n - 3)} \).

(note: \(a = 3 + n(n - 3) \)). Hence, a solution of \(E^4 \Phi = 0 \) will be,
\[
\left[C_1 r^n + C_2 r^{-(n - 3)} \right] [A_1 P'_{n-1} (\mu) + B_1 Q'_{n-1} (\mu) + A_2 P'_{n-3} (\mu) + B_2 Q'_{n-3} (\mu)] \\
\left(\sqrt{1 - \mu^2} \right)
\]

\((A_1, B_1, C_1, A_2, B_2, \text{ and } C_2 \text{ are arbitrary constants})\).

This result has been implicitly stated through equation (17) of this paper.

In particular, for \(n = 1, a = 1 \) and the solutions given by equation 3·30 of reference (1) can be deduced.