Synergistic Hypergolic Ignition of Amino End Group in Monomers and Polymers

S.P. Panda, S.G. Kulkarni, (MRS) S.D. Kakade & A.B. Rahalkar

Institute of Armament, Technology, Pune-411 025

Received 05 January 1985; revised 30 July 1986

Abstract. A few monomers, oligomers and polymers with amino end groups have been discovered to undergo synergistic ignition with red fuming nitric acid (RFNA) when mixed with large quantities of magnesium powder. Aluminium powder under similar conditions does not ignite the mixture while powders of Zn, Co and Cu cause the ignition. Amongst the polymers used in the experiment commercially available nylon 6 is the most important which may be used as a binder for rocket propellant fuel grains, hypergolic with RFNA. Degree of polymerisation or the chain length of the polymers does not drastically affect the synergistic ignition of the polymer mixture with magnesium powder but high molecular weight and fully aromatised polymers like Kevlar and Nomex fail to ignite under similar conditions. Based upon the earlier work of the authors, explanations for the phenomena observed have been provided in terms of creation of hot spots leading to ignition at the amino end groups.

1. Introduction

Synergistic hypergolicity of solid aromatic primary amines and diamines mixed with large quantities of magnesium powder with RFNA as oxidizer’ is reported. The present work is aimed at rendering high molecular weight commercial polymers like nylon 6 and nylon 66 hypergolic with RFNA which has been considered impossible in the past. We have now discovered that though nylon 6 and nylon 66 do not ignite with RFNA or N₂O₅, spontaneous ignition can be achieved if the polymers are mixed with finely divided magnesium powder in various quantities. Hence we felt it worthwhile to extend our experiment to solid monomers, oligomers and polymers having -NH, end group in general as it can form an easy but elegant test for the group irrespective of the solubility of the parent substance in addition to the oligomers and the polymers forming hypergolic fuels for hybrid rocket motors.
2. Experimental

2.1 Materials

Nylon 66 with mp. 265°C was synthesised after Braun et al. The dihydrazides and the polymeric Schiff bases were prepared after Volvelskii et al. and Delman et al. respectively. These workers have reported the characterization of their products which contained terminal \(-\text{NH}_2\) groups.

Nylon 6 was used in small pieces cut from commercial fabrics obtained from M/s Garware Nylons, Pune.

Two hardners for epoxy resins such as aniline-formaldehyde linear condensation product (AFC-M/4) and the condensation product of dimerized linseed oil and an aliphatic polyamine (No 771) were obtained from Dr Beck & Co India Ltd in viscous packs and used as such.

2.2 Methods

2.2.1 ID Measurements

ID values were measured in a modified Pino's apparatus as described by Kulkarni & Panda earlier where an electrical pulse is fed to an electronic timer to start it. Fuel and oxidizer coming in contact with each other produce a flame that sends a stop pulse through a photo cell for the timer. Delays thus recorded are averaged over several values to give the mean ID and its scatter in terms of standard deviation.

The solid amino compounds were powdered which passed through a 100 mesh sieve but were retained in a 150 mesh sieve (dia 149-105μ). Similar restriction of size was not possible for nylon 6 and nylon 66 and viscous amino hardners for epoxy resins. Nylon 6 was used in small pieces cut from commercial fabric whereas nylon 66 and amino hardners for epoxy resins were mixed with magnesium powder with the help of a mortar and pestle as thoroughly as possible.

Magnesium powder was of type 5 as described by an Indian Standard (6). It contained non-coated powders of assorted sizes which passed through a 150 mesh sieve.

RFNA used) in the measurements had 2 I per cent N_2O_4, 76 per cent HNO_3, and 3 per cent H_2O.

3. Results and Discussions

Some of the solid dismino monomers like p-phenylenediamine, \textit{p-benzidine} and hexamethylenediamine are themselves hypergolic but several others like \textit{m-phenylene-diamine} \textit{p, p'-diaminodiphenylmethane} are not hypergolic with RFNA. In either cases the compounds turn highly hypergolic when mixed with about 70 per cent by
weight of magnesium powder. The details of this work is already given in an earlier communication. Since then we have tested similar mixtures of a number of amino-phenols, aminoacids, dihydrazides, polymeric Schiff bases, polyamides (nylons) and viscous polymeric amino hardners for epoxy resins with magnesium powder. These compounds with aminio end groups were characterised by elemental analysis and IR spectral measurements. A spontaneous ignition was achieved for their mixtures with magnesium powder, whether they were themselves hypergolic or otherwise, using RFNA as oxidizer. Details of the ignition delay values measured are reported in Table 1.

It can be seen from Table 1 that there is no fixed percentage of magnesium at which different compounds produced a minimum ignition delay. This occurred at 40 per cent of Mg for compound No 2, 4 and 5; 50 per cent of Mg for compound No 7 and 9; 60 per cent of Mg for compound No 1, 3, 8 and 13; 70 per cent of Mg for compound 6, 10, 11, 14 and 15 and 80 per cent of Mg for compound 12. However, 70 per cent of Mg in a mixture was chosen to study the effect of 1 per cent NH₄VO₃ dissolved in RFNA on ID as an oxidation catalyst to make it fall in line with our earlier work. In all case there was a decrease in ID when RFNA mixed with NH₄VO₃ was used indicating oxidation to be one of the most important pre-ignition reactions in addition to the usual acid-base neutralisation and nitration.

The importance of oxidation at the preignition stage becomes obvious when fully aromatised polymers with amino end groups like Kevlar and Nomex mixed with magnesium powder fail to become hypergolic with RFNA. Easy oxidation of polymeric backbone looks to be an essential condition for synergistic ignition in the systems studied by us.

This restriction does not apply to low polymeric compounds like the poly Schiff bases containing reactive >C=N bonds in their backbones.

Role of magnesium powder in our study is interesting. It reacts vigorously with HNO₃, N₂O₄ and H₂O₂, the different constituents of RFNA though remaining non-hypergolic. The most crucial reaction for ignition of the mixture of amino compounds with magnesium seems to be the interaction of the metal and its nitrate with the initial reaction intermediates of the primary amino groups with HNO₃. Strong bases like tertiary and Schiff bases without amino end groups mixed with magnesium powder do not produce synergistic ignition with RFNA. They form salts almost quantitatively with HNO, like
<table>
<thead>
<tr>
<th>Compound</th>
<th>M.P.</th>
<th>(\text{Mean}^{(2)})</th>
<th>(\text{Standard deviation}^{(3)})</th>
<th>(\text{Minimum % of Mg. for hypergolicity}^{(11)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrazine and glyoxal (1 : 1) condensate</td>
<td>> 300</td>
<td>205.1</td>
<td>6.6</td>
<td>75.8</td>
</tr>
<tr>
<td>Ethylenediamine and glyoxal (1 : 1) condensate</td>
<td>> 300</td>
<td>450.3</td>
<td>3.0</td>
<td>646.6</td>
</tr>
<tr>
<td>Hexamethylenediamine and glyoxal (1 : 1) condensate</td>
<td>> 300</td>
<td>508.6</td>
<td>6.6</td>
<td>940.4</td>
</tr>
<tr>
<td>p-Phenylenediamine and glyoxal (1 : 1) condensate</td>
<td>> 300</td>
<td>419.3</td>
<td>4.4</td>
<td>11.1</td>
</tr>
<tr>
<td>m-Phenylenediamine and glyoxal (1 : 1) condensate</td>
<td>> 300</td>
<td>949.6</td>
<td>6.5</td>
<td>2.5</td>
</tr>
<tr>
<td>p,p'-Diaminodiphenylmethene and glyoxal (1 : 1) condensate</td>
<td>> 300</td>
<td>855</td>
<td>4.0</td>
<td>10.5</td>
</tr>
</tbody>
</table>

\(^{(2)}\) \(\text{Mean}^{(2)}\) values in milliseconds of Mg powder (type 5) in the fuel
\(^{(3)}\) \(\text{Standard deviation}\) values
\(^{(5)}\) \(\text{Minimum \% of Mg. for hypergolicity}\) values

Table 1. Ignition delay values of monomers and pol

\(\text{Ignition delay}^{(8)}\) values in milliseconds of Mg powder (type 5) in the fuel
\(\text{Minimum \% of Mg. for hypergolicity}\) values
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Benzidine and glyoxal (1:1)</td>
<td>>300</td>
<td>Mean</td>
<td>Hyper-</td>
<td>165.8</td>
<td>98.5</td>
<td>149.6</td>
<td>198.3</td>
<td>224.3</td>
<td>190.3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard deviation</td>
<td>golic, long delay</td>
<td>1.1</td>
<td>2.0</td>
<td>2.1</td>
<td>2.5</td>
<td>3.1</td>
<td>2.7</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Dihydrazide of oxalic acid</td>
<td>299</td>
<td>Mean</td>
<td>Hyper-</td>
<td>85.3</td>
<td>79.3</td>
<td>64</td>
<td>73.3</td>
<td>74.3</td>
<td>70.9</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard deviation</td>
<td>golic, long delay</td>
<td>3.0</td>
<td>3.5</td>
<td>1.0</td>
<td>2.1</td>
<td>3.0</td>
<td>1.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dihydrazide of malonic acid</td>
<td>155</td>
<td>Mean</td>
<td>Hyper-</td>
<td>281.3</td>
<td>157.6</td>
<td>180.3</td>
<td>271</td>
<td>279.6</td>
<td>267.7</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard deviation</td>
<td>golic, long delay</td>
<td>3.5</td>
<td>3.1</td>
<td>1.5</td>
<td>3.0</td>
<td>2.1</td>
<td>2.1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Dihydrazide of succinic acid</td>
<td>168</td>
<td>Mean</td>
<td>Hyper-</td>
<td>360.3</td>
<td>252.3</td>
<td>225</td>
<td>212.3</td>
<td>215.6</td>
<td>204.3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard deviation</td>
<td>golic, long delay</td>
<td>4.0</td>
<td>3.5</td>
<td>2.6</td>
<td>3.1</td>
<td>1.5</td>
<td>3.1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Dihydrazide of adipic acid</td>
<td>171</td>
<td>Mean</td>
<td>Hyper-</td>
<td>321.6</td>
<td>279.3</td>
<td>236.3</td>
<td>215.6</td>
<td>248.3</td>
<td>201</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard deviation</td>
<td>golic, long delay</td>
<td>3.2</td>
<td>1.5</td>
<td>4.0</td>
<td>3.1</td>
<td>3.5</td>
<td>2.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Nylon 6</td>
<td>215</td>
<td>Mean</td>
<td>Non-hyper-</td>
<td>3643.5</td>
<td>1168.6</td>
<td>622</td>
<td>533.3</td>
<td>562</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard deviation</td>
<td>golic with long delay</td>
<td>43.1</td>
<td>29.9</td>
<td>44.2</td>
<td>3.7</td>
<td>4.2</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Contd.)
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon 6.6</td>
<td>265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3225.5</td>
<td>1142.3</td>
<td>1332.3</td>
<td>non-hyper-golic</td>
<td>1274</td>
<td>20</td>
</tr>
<tr>
<td>Aniline formaldehyde linear condensation product (AFC-M/4)</td>
<td>265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1134</td>
<td>870.5</td>
<td>345.6</td>
<td>489</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>Dimerized linseed oil condensed with polyaniline (no. 771)</td>
<td>265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1260</td>
<td>1033</td>
<td>560.5</td>
<td>709</td>
<td>527.5</td>
<td>10</td>
</tr>
</tbody>
</table>

- **a-Oxidizer to fuel ratio:** The oxidizer-to-fuel ratio was kept at 1, which gave minimum ID in all cases.

- **b-RFNA used contained:** Ammonium molybdate (1%) by weight as catalyst.
where the acidic H atom remains strongly bound to the amino nitrogen. Weak bases like the organic primary amines react with HNO, producing Hantzsch complex of the type,

\[
\begin{array}{c}
\text{H} - \text{N} : \text{N} : \text{O} \\
\text{R} - \text{N} : \text{N} : \text{O} \\
\text{H} : \text{O} - \text{H}
\end{array}
\]

which can eliminate a molecule of water in presence of dehydrating agents to form a nitramine’ of the structure :

\[
\begin{array}{c}
\text{H} : \text{O} \\
\text{R} - \text{N} : \text{N} : \text{O}
\end{array}
\]

Magnesium and its nitrate can catalyse the nitramine formation by abstracting water from the Hantzsch complex. For this, experimental evidences have been provided by us earlier. Primary nitramines being thermally unstable decompose producing combustible gases for ignition. Initiation of ignition in the gaseous phase looks to be assisted by vapourisation of magnesium (BP, 1107°C) as a large amount of MgO smoke is produced in the flame and the ignition is inhibited by replacement of magnesium with aluminium which boils at 2494°C. This is supported by Coffin who observed that burning of magnesium ribbon was predominantly a vapour phase phenomenon catalysed by traces of water. Besides, we also found that metal powders with relatively low melting and boiling points like zinc and lead could catalyse ignition of solid organic primary amines with RFNA while high melting and boiling metals like iron, nickel, titanium and tungsten fail to produce ignition presumably due to the difficulty in reaching the gaseous phase. However, further investigation became necessary as the powders of copper and cobalt with high melting and boiling points replacing magnesium in the above fuel mixtures could ignite them with RFNA as well. It was first thought that like magnesium nitrate (anhydrous), nitrates of cobalt, copper and zinc could abstract water from the Hantzsch complex formed by the amines with HNO, thus catalysing the nitramine formation in the synergistic hypergolic reaction. To test this hypothesis freshly prepared aniline nitrate was mixed with powders of cobalt, copper and zinc in 50 : 50 weight proportions and rubbed with slight moisture in a mortar and pestle. There was neither any heat generation nor gas evolution. It may be pointed out that similar mixtures with magnesium underwent rapid exothermic reactions with liberation of nitrous fumes and occasional incidence of fire when rubbed with moisture. It indicates that the mechanism operating for the
synergistic ignition of solid primary amines mixed with magnesium powder and RFNA cannot be extended to similar mixtures with cobalt, copper and zinc.

Like magnesium, zinc reacts with HNO$_3$ and H$_2$O of RFNA to produce hydrogen which is highly combustible. But cobalt and copper do not liberate hydrogen either from H$_2$O or HNO$_3$.

It is, therefore, possible that unlike magnesium nitrate, nitrates of cobalt and copper may undergo complex formation with primary amino group liberating heat in the preignition stage. These, hydrated nitrates of cobalt, copper, zinc and magnesium were mixed with molten o-nitroaniline as a representative compound having a comparatively lower melting point for studying the possible interactions between the amino group and the metal ions at elevated temperatures. Incidentally, o-nitroaniline when mixed with magnesium, zinc, cobalt and copper undergoes synergistic ignition with RFNA and thus is a good choice for model reactions. The melts of o-nitroaniline the hydrated metal nitrates of cobalt and copper, zinc and magnesium (1:1 by weight) were cooled down and their far infrared spectra were recorded at the room temperature. It was observed that where as Mg (NO$_3$)$_2$.6H$_2$O and Zn (NO$_3$)$_2$.6H$_2$O produced simple combination spectra mixed with o-nitroaniline, similar mixtures of Cu (NO$_3$)$_2$.3H$_2$O and Co(NO$_3$)$_2$.3H$_2$O produced distinctly different spectra than their individual components. As the far infrared region is specific for absorption due to the complex formation of cobalt and copper with the amino ligands, our observations led us to believe that the exothermic complex forming reactions at the preignition stage between the ions of cobalt and copper with primary amino groups might abet synergy in ignition of the mixtures studied by us with RFNA as oxidizer.

3.1 Effect of Chain Length on ID

It may be seen from Table 1 that chain length of polymers which are very small for polymeric Schiff bases (Compound Nb. 1-7, $\overline{DP} = 4$), dihydrazides (compound No. 8-11, $\overline{DP} = 1$) and polymeric amino hardners for epoxy resins (compound No. 14, $\overline{DP} = 6-7$, compound No. 15, $\overline{DP} = 2$), and large for nylon 6 and nylon 66 (compound No. 12 and 13, $\overline{DP} = 200$) do not affect ID drastically as long as the amino end groups exist in them. Fast and exothermic reactions with RFNA taking place at the amino end groups lead to ignition. This supports the concept of creation of hot spots in non-conducting solids as a condition for thermal ignition. Depolymerisation which is endothermic does not seem to affect significantly synergistic ignition of polymers studied by us.

4. Conclusion

Synergistic ignition of monomers, oligomers and polymers with NH, end groups mixed with various quantities of magnesium powder using RFNA as oxidizer has been discovered. This may help in designing hybrid rocket fuel grains which are hypergolic.
Synergistic Hypergolic Ignition

-with RFNA and possess desired mechanical strength to prevent erosive burning. It is also observed that Zn, Cu and Co can replace Mg in the fuel mixtures to produce synergistic ignition with RFNA, through a different mechanism. Hot spot formation at the terminal -NH$_2$ group due to chemical reactions may form the site of initiation of the synergistic ignition phenomenon. This may form a test for-NH, group in organic substances including oligomers and polymers.

Acknowledgement

Thanks are due to the Director of Training and Sponsored Research, Research and Development Organisation, Ministry of Defence, for allotting to Dr. S. P. Panda and Dr. S. G. Kulkarni a Defence Grant-in-Aid Scheme project under which the work was carried out and offering a junior research fellowship to Mrs. S. D. Kakade.

References