New Method For Calculating The Input Impedance of Rectangular Patch Antenna

Berhampur University, Berhampur - 760 007.

ABSTRACT

The cavity model has been modified to account for the impedance boundary condition at the edges of a rectangular microstrip antenna. Results have been compared with those from the old cavity model and experimental data.

1. INTRODUCTION

Cavity model being used to find the input impedance of a rectangular patch antenna, treats the antenna as a cavity with ideal magnetic walls at the boundary. However, the boundary is not ideal and possesses finite impedance. In practice, power is lost from the cavity formed by microstrip patch due to radiation from the fringing fields at the periphery. Effects of fringing fields are accounted for by extending the boundary. In the present work, the impedance boundary condition, $\tilde{H} = Y_w (\hat{n} \times \vec{E})$, suggested by Carver is used to account for radiation. The wall admittance, Y_w will, in general, have different values on the walls along Y-axis than on those along X-axis. With these assumptions the cavity model has been modified and the results of the proposed model are compared with the original cavity model for a rectangular patch antenna.

2. THEORY

Figure 1 shows a rectangular patch antenna of length l, width w, on a substrate of thickness h and dielectric constant ε_r. For electrically thin substrate (i.e. $h \ll \lambda_o$) the Z-directed electric field will be independent of Z, under the patch. The modes will be TM_{mn} so that

$$E_z(x, y) = \sum_m \sum_n A_{mn} e_{mn}(x, y)$$

where, A_{mn} are the mode amplitude coefficient and e_{mn} are the orthonormal electric field mode vectors, expressed as

$$e_{mn}(x, y) = \chi_{mn} (e^{-jk_{mn}x} + R_{m} e^{jk_{mn}x})$$

$$\times (e^{-jk_{mn}y} + R_{n} e^{jk_{mn}y})$$

where R_m and R_n are the reflection coefficients along the boundaries parallels to X and Y-axes, respectively. Using normalisation condition for $e_{mn}(x, y)$, it is found that

$$\chi_{mn} = \frac{\delta_m \delta_n}{2l w}$$

$$\delta_p = \left(1 + \cos p \pi \times \frac{\sin k_p x}{k_p x}\right)^{-1/2}$$

Received 09 April 1997, revised 19 June 1998
with \(p = m \) when \(x = w \) and \(p = n \) when \(x = w \)

\[
k_m = \frac{m\pi}{l_e} \quad \text{and} \quad k_n = \frac{n\pi}{l_e}
\]

where \(l_e \) and \(w_e \) are the effective length and width, respectively due to the fringing field\(^3\), expressed as

\[
l_{eq} = l + 2\delta_l
\]

\[
\delta_l = 0.412h \frac{(\varepsilon_{eff} + 0.3)(\frac{\pi}{h} + 0.264)}{(\varepsilon_{eff} - 0.258)(\frac{\pi}{h} + 0.813)}
\]

\[
\varepsilon_{eff} = \varepsilon_r + \varepsilon_i - \frac{1}{2} \left(1 + \frac{10h}{w} \right)^{-1/2}
\]

By interchanging \(l \) with \(w \) in the above equation, the effective width can be calculated.

2.1 Determination of Reflection Coefficient

Maxwell’s equation states

\[
\vec{H} = \frac{j}{\omega \mu_0} \vec{\nabla} \times \vec{E} = \frac{j}{\omega \mu_0} \left(\frac{\partial E_z}{\partial y} - \hat{y} \frac{\partial E_z}{\partial x} \right)
\]

(5)

From this equation, the \(\vec{H} \) field on the

(i) \(Y \)-surface at \(y = 0 \) and \(y = 1 \) will be of the

\[
H_y = -j \frac{\partial E_z}{\partial x}
\]

(6)

(ii) \(X \)-surface at \(x = 0 \) and \(x = w \) will be of the

\[
H_x = -j \frac{\partial E_z}{\partial y}
\]

(7)

The impedance boundary condition on these surfaces is

\[
\vec{H} = Y_w (\hat{n} \times \vec{E})
\]

(8)

For the above equation

at \(y = 0, \hat{n} = -\hat{y}; y = 1, \hat{n} = -\hat{y} \)

\(x = 0, \hat{n} = -\hat{x}; x = w, \hat{n} = -\hat{x} \)

2.2 Determination of Modal Coefficient

For a coaxial feed, considering the effect of \(Z \)-directed current \(I_0 \) on the probe of small circular cross-section of diameter \(d \) at \((x_0, y_0) \) the

\[
A_{mn} = \frac{j \omega \mu_0}{k_d^2 - k_{mn}^2} \iiint \int J e^{*mn} d\nu
\]

(13)

Here, \(J \) is the current density. To account for the losses, it is assumed that \(k_d^2 = \omega^2 \mu_\varepsilon_0 \varepsilon_{eff} (1 - j\delta_{eff}) \) where \(\delta_{eff} \) is the effective loss tangent.
Using the expressions for \(R_m \) and \(R_n \), the input impedance is calculated as

\[
Z_{in} = j \frac{16 \omega h}{\epsilon_{0} \epsilon_{\text{eff}}} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{|e_{mn}|^2 \cos^2 \left(\frac{m\pi}{w_e} (x_0 - \frac{w}{2}) \right) \cos^2 \left(\frac{n\pi}{l_e} (y_0 - \frac{l}{2}) \right)}{\omega_{mn}^2 - (1 - j \delta_{\text{eff}}) \omega^2}
\]

The resonant resistance in the dominant \(TM_{01} \) mode is

\[
R_r = \frac{2 h G_{01}}{\cos \left(\frac{\pi (y_0 - \frac{l}{2})}{l_e} \right) \times \left(\sin \left(\frac{\pi l}{l_e} \right) \right)^{-1}}
\]

3. RESULTS & DISCUSSION

The resonant resistance is calculated using both old cavity model and the proposed cavity model. The results are compared with the measured values\(^4\) in Table 1. The present method gives accurate results for the resonant resistance in comparison to the old method in all the cases. Resonant resistance are mostly within an error of 6 per cent. The observed discrepancy can be explained in the following manner:

When the physical dimensions of the antenna are small, the tolerance effect is high\(^5\), i.e., the feed

<table>
<thead>
<tr>
<th>(\varepsilon_r)</th>
<th>(h) (mm)</th>
<th>(l) (mm)</th>
<th>(w) (mm)</th>
<th>(Y_0) (mm)</th>
<th>(d) (mm)</th>
<th>(f_r) (GHz)</th>
<th>(R_r) ((\Omega))</th>
<th>(f_r) (GHz)</th>
<th>(R_r) ((\Omega))</th>
<th>(f_r) (GHz)</th>
<th>(R_r) ((\Omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>1.27</td>
<td>6.5</td>
<td>1.19</td>
<td>2.26</td>
<td>335</td>
<td>343</td>
<td>+2.33</td>
<td>2.31</td>
<td>+1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>1.27</td>
<td>3.2</td>
<td>1.19</td>
<td>4.43</td>
<td>339</td>
<td>389</td>
<td>+14.75</td>
<td>4.49</td>
<td>+5.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>2.54</td>
<td>6.5</td>
<td>2.38</td>
<td>2.18</td>
<td>363</td>
<td>394</td>
<td>+8.50</td>
<td>2.29</td>
<td>+0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.22</td>
<td>0.79</td>
<td>4.0</td>
<td>2.42</td>
<td>3.92</td>
<td>136</td>
<td>136</td>
<td>0.0</td>
<td>3.92</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.22</td>
<td>0.79</td>
<td>2.0</td>
<td>2.42</td>
<td>7.56</td>
<td>152</td>
<td>153</td>
<td>+0.65</td>
<td>7.61</td>
<td>+0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.22</td>
<td>1.52</td>
<td>4.0</td>
<td>4.66</td>
<td>3.82</td>
<td>119</td>
<td>153</td>
<td>+28.57</td>
<td>3.82</td>
<td>+27.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.22</td>
<td>1.52</td>
<td>2.0</td>
<td>4.66</td>
<td>7.72</td>
<td>69</td>
<td>147</td>
<td>+113.0</td>
<td>7.55</td>
<td>+108.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
position may be slightly offset giving an H-plane error. This can result in excitation of stronger higher order modes. These higher order modes are responsible for shift in resonant resistances in all the cases, and the shifts are prominent as the physical dimensions are reduced increasing the H-plane error.

For antennas with dielectric substrate which are electrically thick and/or have high dielectric constant, excitation of surface wave is strong. This is also responsible for higher discrepancies between the theoretical and the experimental results.

ACKNOWLEDGEMENT

This work is done as a part of the project sponsored by the Deptt. of Electronics, Government of India. The authors express their gratitude to the sponsor.

REFERENCES

Contributors

Dr RK Mishra obtained his PhD from University College of Engineering, Burla, Sambalpur University, in 1992. He has been working as lecturer at the Department of Electronic Science, Berhampur University, Orissa, since 1991. Presently, he is executing a major technology development project sponsored by the Department of Electronics. He has published more than 25 research papers in national/international journals. His areas of research include microwaves, computer-aided design in microwaves, application of artificial neural networks in microwaves, active and passive patch antennas in free space and plasma medium. He is a life member of the Indian Society of Telecommunication Engineers (India), a member of the Institute of Electronics and Telecommunication Engineers and IEEE (USA).

Mr GK Patra obtained his MSc (Electronics) and post-graduate diploma in computer applications (PGDCA) from Berhampur University in 1994 and 1995, respectively. Presently, he is working as Scientist at the National Aerospace Laboratory, Bangalore. His areas of research include development of computer-aided design models for patch antennas.
Mr A Patnaik obtained his MSc (Electronic) and post-graduate diploma in computer applications (PGDCA) from Berhampur University in 1993 and 1994, respectively. He has been working as a research fellow at the Department of Electronic Science, Berhampur University since 1995. His areas of research include application of artificial neural network to microwaves, particularly to patch antennas and computer-aided design for patch antennas. He has published more than eight research papers in national/international journals. He is a student member of IEEE (USA).

Mr SK Dash obtained his MSc (Physics) from the Utkal University, in 1991. Presently, he is working at the Department of Electronic Science, Berhampur University for his PhD. His areas of research include patch antennas in free space and plasma medium. He is a life member of the Indian Society of Telecommunication Engineers.