Generalised Model for Aircraft Vulnerability by Different Weapon Systems

V.P. Singh and Yuvraj Singh
Centre for Aeronautical Systems Studies & Analyses, Bangalore - 560 075

ABSTRACT

The authors' earlier model for the vulnerability of aircraft where aircraft was considered as a combination of cylinder, cones and wedges has been extended to the case when structural data of aircraft as well as its vital parts are given in the form of three-dimensional curvilinear triangles. In the case of VT-fused ammunition, spherical normal distribution has been used to estimate the landing probability of the shell in a cylindrical vicinity region around the aircraft. Kill criteria of vital parts have been redefined.

1 INTRODUCTION

Study of vulnerability of a combat aircraft against a ground-based air defence system is of utmost importance for the design and development of aircraft as well as weapon systems. A number of models have been reported in literature. A simplistic model, where areas of vulnerable parts projected on a given plane are given as inputs, was reported by Ball. A dynamic model of aircraft vulnerability, where a typical aircraft is assumed to be moving along an arbitrary profile, was studied. In the study it was assumed that the aircraft comprises various sections modelled as cones, cylinders, wedges, etc. Damage to the aircraft due to explosive charge as well as fragments, when warhead/ammunition explodes in its near vicinity, has been considered. Based on the total energy requirements, kill criterion has been taken as the minimum number of fragments required to penetrate and kill a particular part. In the case of blast waves, it is assumed that the probability of kill is 1, depending upon the impulse transmitted to the structure. A typical aircraft and a typical air defence gun with DA/VT-fused ammunition have been considered for validation of the model.

The above study has now been extended by giving structural data for the aircraft as well as its vital parts in the form of triangular elements. These triangular elements are obtained by dividing the surface of the whole aircraft and its vital parts into small three-dimensional triangles. For this purpose, one has to go to the drawings of the aircraft and obtain the \((x,y,z)\) coordinates of apexes of all the triangles. Kill criterion due to fragment hits has been modified so as to be based on fragment energy concept (Section 5.1). A three-dimensional model for single shot hit probabilities has been presented in Section 5.2. The effect of redundant vulnerable parts on the overall kill probability of the aircraft has also been studied.

2. MATHEMATICAL MODEL

It has been assumed in the model that the aircraft is approaching a friendly vulnerable target (which is also the location of the air defence gun) in a level flight. The direction cosines (DCs) of the aircraft wind and body axes wrt the fixed frame
of reference GXYZ with origin at the gun/missile position (origin G) are given by aircraft flight profile equations. Once the aircraft enters friendly territory, it is first detected by the surveillance radar and is then tracked by the tracking radar in order to get its profile. A ground-based AD gun fires at the future position of the aircraft subject to the condition that the shell and the aircraft reach that point simultaneously. In the present paper, it has been assumed that the aircraft has five vital parts. A part is defined as a vital part if its failure results in immediate failure of the aircraft to continue its flight mission. These parts are avionics, pilot 1, pilot 2, two fuel tanks and two engines. Fuel tanks are of two types; one is the fuselage fuel tank and the other is situated in the two wings. It is assumed that if one of the vital parts is killed, the aircraft is killed.

Effective probability of kill of a typical vital part (say, \(j^{th}\)) of an aircraft by a round is defined as

\[
\bar{P}_k = P_d, P_h, P_f P_{k/hf}
\]

where \(P_d, P_h, P_f P_{k/hf}\) are the probabilities of detection of the aircraft, single shot hit on a vital part, fuse functioning and kill subject to being hit and fuse functioning, respectively. \(P_h\) is hit on the part in the case of DA-fused ammunition and landing in the vicinity zone in the case of proximity-fused ammunition. In the present model, fuel tanks are taken as redundant vital parts. If a typical vital part consists of \(r\) redundant parts which can function independently, then the vital part may be treated as killed if all of its redundant parts are killed. It is known that redundancy of vital parts greatly reduces vulnerability of the aircraft. Kill criterion of an aircraft, for DA and VT-fused ammunition, has been discussed in Sections 4 and 5, respectively. Two fuel tanks located in the two wings are treated as one part, as they are interconnected. Similarly, the two engines are taken as redundant vital parts. Pilot 1 and pilot 2 are non-redundant. The probability of kill of an aircraft as well as its vital parts has been discussed here for two types of weapon systems, viz., AD guns with DA and proximity-fused ammunition.

3. PROBABILITY OF DETECTION

The probability of detection of an aircraft is an important parameter for the assessment of its survivability/vulnerability, and for a typical air defence radar is given as

\[
P_d(X) = \begin{cases}
1.0 & \text{for } 0 \leq X < 0.15 \\
31.470X^3 - 33.7136X^2 + 8.57498X + 0.33782 & \text{for } 0.15 \leq X \leq 0.42 \\
-8.2691X^3 + 18.5793X^2 - 13.9667X + 3.51733 & \text{for } 0.42 < X \leq 0.75 \\
0 & \text{for } X > 0.75
\end{cases} \tag{2}
\]

where \(X = (R/R_o)\), \(R\) being the distance of aircraft from the radar and for the typical radar, \(R_o = 65.5\) km. \(R_o\) involves height of the target and other radar specifications.

4. VULNERABILITY OF AIRCRAFT DUE TO DA-FUSED AMMUNITION

To evaluate single shot hit probability \(P_h\) on a typical vital part of the aircraft, its projection is obtained on a plane normal to the line of shot (N-plane) by simple geometric transformations (Fig. 1). Probability of hit on vital part is the same as that on its projection on N-plane is given as

\[
P_h = \frac{1}{2\pi\sigma_s\sigma_t} \int_{F_1} \exp \left(-\frac{1}{2} \left(\frac{s^2}{\sigma_s^2} + \frac{t^2}{\sigma_t^2}\right)\right) dsdt \tag{3}
\]

where \(F_1\) is the projected region of the component triangles over N-plane; \(s, t\) is the two-dimensional coordinate system on N-plane and \(\sigma_s, \sigma_t\) are standard deviations of impact points from the origin along \(S\) and \(T\) axes due to in-built system errors. In this paper, it has been assumed that \(\sigma_s = \sigma_t\).

To determine the damage caused by the AD guns to a given aircraft, the following methodology has been adopted in the model:

(a) Considering the actual terminal velocity, mass and calibre of the shell, penetration in the vital as well as the non-vital parts has been
uncritical energies for the kill of various vulnerable parts are given in Table 1. The remaining energy \(E_r \) is the energy left over after penetrating the thickness (Table 2) of the vital part. While analysing penetration, overlapping of one triangular element by the other is taken into account (Appendix 1).

(c) Thus, knowing the probabilities of kill of different vital parts, the probability of kill of the aircraft is calculated using Eqn (15).

The remaining velocity \(V_r \) after penetrating the vulnerable part is given by

\[
V_r = (V - \pi \rho D_0 R^2 V \sin \alpha / m) \cos \theta
\]

where \(V \) is the normal striking velocity; \(V_r \) the remaining velocity; \(\rho \), the density of the target; \(\alpha \), the nose cone angle; \(\theta \), the striking angle of the projectile; \(D_0 \), the thickness of the target; \(R \), the radius of the projectile; and \(m \), the mass of the projectile.

In the present model, it has been assumed that if the shell hits at any of the vital or non-vital (rest of the aircraft body) parts, its probability of kill depends on whether the shell penetrates the aircraft body or not. The probabilities of kill of the aircraft’s components \((P_{k|h}^f) \), are computed for the K-kill of the aircraft, when a small calibre DA-fused high explosive projectile (23 mm) hits it. In the case of a higher calibre projectile, these probabilities of kill are multiplied by the factor:

\[
E_f = 2.0 \left[1 - 0.5 \exp \left(-\left(Q - Q_d / Q_d \right) \right) \right]
\]

Table 1. Equivalent thickness of various vital and non-vital parts

<table>
<thead>
<tr>
<th>Component</th>
<th>Critical energy required to kill vital part (uncritical energy is given in brackets) (J)</th>
<th>Equivalent thickness of dural (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avionics</td>
<td>339 (81.4)</td>
<td>27</td>
</tr>
<tr>
<td>Pilot section</td>
<td>678 (81.4)</td>
<td>5</td>
</tr>
<tr>
<td>Engines</td>
<td>1356 (135.6)</td>
<td>20</td>
</tr>
<tr>
<td>Fuel tanks</td>
<td>339 (81.4)</td>
<td>20</td>
</tr>
<tr>
<td>Remaining parts</td>
<td>1350 (135.0)</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2. Variation of \(F_{k|h}^f \) for different levels of bursts

| Component | Probability of K-kill \((F_{k|h}^f) \) | Internal burst (%) | External burst (%) |
|---------------|---|--------------------|--------------------|
| Avionics | 50 | 10 | |
| Pilot sec | 50 | 10 | |
| Engines | 30 | 25 | |
| Fuel tanks | 75 | 30 | |
| Remaining parts | 25 | 05 | |
where \(Q_1 \) is the total energy (explosive energy + kinetic energy) released by a typical 23 mm shell with 20 g HE, and \(Q \) is the total energy of the given shell. This has been done to take into account the effect of higher explosive energies of different shells on the kill of the aircraft. It is well known that damage to a target is an exponential function of the explosive energy. Thus the probability of kill of the \(j^{th} \) component \((P_{k/h}^j) \) is given as

\[
P_{k/h}^j = P_{k/h}^j \cdot F_{k/h} E_f
\]

where \(P_{k/h}^j \) is the probability of kill given by Eqn (7), and factor \(F_{k/h} \) is given in Table 2. It is to be noted that factor \(E_f \) is multiplied with the total kill probability, only in the case of DA-fused ammunition. In Eqn (6), \(j \) is not the dummy index, but indicates the \(j^{th} \) vital part.

5. VULNERABILITY OF AIRCRAFT DUE TO PROXIMITY-FUSED AMMUNITION

In this section, the case of vulnerability of the aircraft, when attacked by a shell fitted with proximity-fused ammunition is discussed. A vital component is treated as killed if the remaining energy of the fragment after penetrating the vital part is more than the critical energy (Table 2) required to kill it.

5.1 Energy Criterion for Kill

In case of exploding ammunition, viz., shells and non-exploding projectiles, viz., fragments, the probability of kill of a vital part depends on \(E_r \) of the fragment after penetration and is given as

\[
P_{k/h} = \begin{cases}
1 & E_r > E_c \\
\frac{E_c - E_u}{E_c - E_u} & E_u < E_r < E_c \\
0 & E_r > E_u
\end{cases}
\]

where \(E_r \) is the kinetic energy of a fragment after penetrating the outer structure; \(E_u \) is the uncritical energy so that if the energy imparted to the aircraft component is \(< E_u \), no damage is caused; \(E_c \) is the critical energy required to kill the component, so that if the energy imparted to the aircraft is \(> E_c \), complete damage is caused.

5.2 Probability of Landing in the Case of VT-Fused Shell

A proximity-fused ammunition shell can land anywhere in the vicinity of the aircraft. Vicinity is defined as the volume around the aircraft body in which if the shell lands, the fuse will function with probabilities \((P_f) \); elsewhere it will not function \((P_f = 0) \). For the missile warhead, the probability of fuse functioning is assumed to be 1. Let \(R_a \) and \(l_o \) be the radius and half length of fuselage of the aircraft, respectively and \(m_s \) the miss-distance from the surface of the aircraft. Distance \(m_s \) is the distance from the aircraft surface within which the fuse will function. A coaxial cylinder surrounding the aircraft is drawn, so that the axis of the cylinder is \(x \)-axis, with centre \(O \), length \(2(l_o + m_s) \) and radius \(R_\alpha \) such that \(R_a = R_\alpha + m_s \). Volume of the cylinder is nothing but the vicinity region. Vicinity layers for simplicity are assumed to be coaxial cylinders with centre at the centre of the aircraft.

Probability of landing and fuse functioning of the projectile in terms of fixed coordinate system around the aircraft is:

\[
\begin{align*}
P_{L_f} &= \frac{1}{\sqrt{2\pi\sigma}} \int P_f (r - R_a) \exp\left\{-\frac{(\bar{x}^2 + \bar{y}^2 + \bar{z}^2)}{2\sigma^2}\right\} \, d\bar{x}d\bar{y}d\bar{z} \\
\end{align*}
\]

where

\[
\begin{align*}
\bar{x} &= x - x_0 \\
\bar{y} &= y - y_0 \\
\bar{z} &= z - z_0
\end{align*}
\]
and $P_f(r-R_u)$ is the probability of the fuse functioning. R_u is the value of r at the surface of the aircraft, r being the radial distance from the u-axis. Equation (8) is a simple extension of two-dimensional Gaussian distribution to a three-dimensional case. By converting (x, y, z) coordinates to moving coordinates (u, v, w) with the help of linear transformations, one gets:

$$P_{lf} = \frac{1}{(\sqrt{2\pi}\sigma^3} P_f(r-R_u) \exp \left(-\frac{1}{2}\frac{(u^2 + v^2 + w^2)}{\sigma^2}\right) \int J_1(\tilde{x}, \tilde{y}, \tilde{z}) \, du \, dv \, dw$$

where

$$J_1(\tilde{x}, \tilde{y}, \tilde{z}) = \begin{vmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \\ n_1 & n_2 & n_3 \end{vmatrix}$$

is the Jacobian used for transformation of coordinates from one set of coordinate systems to another set of coordinate systems. Transforming the above equation to cylindrical coordinates (r, θ, ζ), one gets:

$$P_{lf} = \frac{1}{\sqrt{2\pi}\sigma^3} P_f(r-R_u) \exp \left(-\frac{1}{2}\frac{r^2 + \zeta^2}{\sigma^2}\right) J_1(r, d\zeta, dr, d\theta)$$

The expression for P_{lf}^{μ} has been explained in Section 4 [Eqn (6)]. Evaluation of P_{lf}^{μ} depends on the kill criteria. In integral (Eqn 11), limit R_{L} is a typical distance from the aircraft, such that if the shell explodes between R_u and R_{L}, damage is due to the blast as well as the fragments; otherwise, it is only due to the fragments.

It has been assumed here that the kinetic energy of a projectile hitting the j^{th} vital part from a particular elemental point in the vicinity region is constant. While calculating the impact velocity of the fragment, attenuation of fragment velocity due to drag has been taken into account.

6. Penetration Laws

If the component is inside the structure, the fragments before hitting it penetrate the aircraft structure. During penetration in the outer skin, some of the energy is lost. The remaining energy, after penetration, is responsible for the damage to the component. V_e of the fragment is governed by the laws of terminal ballistics and is given by the empirical relation:

$$V_e = V_s - Kr a m a (\sec \theta)^a V_s a$$

where values of a_i for duraluminium are given in Table 3. In Eqn (12), m_i is the striking mass in grains; V_s, striking velocity in ft/s; q, the impact angle; t, thickness in inches; and K is a constant, depending on the shape of the projectile.

Table 3. Coefficients of Thor equations of penetration for duraluminium

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Duraluminium</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>1.029</td>
</tr>
<tr>
<td>a_2</td>
<td>-0.386</td>
</tr>
<tr>
<td>a_3</td>
<td>1.251</td>
</tr>
<tr>
<td>a_4</td>
<td>-0.139</td>
</tr>
<tr>
<td>K</td>
<td>9.0843 x 10^4</td>
</tr>
</tbody>
</table>

7. Cumulative Kill Probability

As the aircraft is considered to have been divided into y parts, let P_{lf}^{μ} be the single shot kill probability of the j^{th} vital part due to the i^{th} fire, each fire
The cumulative kill probability P_k of the jth vital part in N number of fires can be given as

$$P_k = 1 - \prod_{i=1}^{N} [1 - P_{k_i}^j]$$ \hspace{1cm} (13)

Further, the aircraft can be treated as killed if at least one of its vital parts, is killed. Thus, in this case, the cumulative kill probability for the aircraft as a whole can be given as

$$P_k = 1 - \prod_{i=1}^{y} [1 - P_i^j]$$ \hspace{1cm} (14)

In case the jth part of the aircraft has y redundant parts, P_k is given by:

$$P_k = 1 - \prod_{i=1}^{y} \left[1 - \prod_{r=1}^{y} P_{k_i}^r \right]$$ \hspace{1cm} (15)

where $P_{k_i}^r$ denote the kill probability of the rth redundant part of the jth vital part.

8. DATA USED

8.1 Target Aircraft

Structural data of the aircraft as well as its various vital parts have been discussed earlier in terms of triangular elements.

9. RESULTS & DISCUSSION

Data on variation of probability of kill of the aircraft and its various vital parts vs number of rounds for DA-fused ammunition are given in Table 4. Various parts of the aircraft have been modelled as a collection of three-dimensional triangular elements (Fig. 1). Although the kill criteria and vital parts of the aircraft considered in the earlier model are not exactly the same, yet the cumulative kill probability of the aircraft vs number of rounds for the range 2000 m has been shown in Tables 4 and 5 in order to have a feel of comparison.
It has been assumed that the aircraft is coming from a large distance along an arbitrary path and is being tracked by the tracking radar. The aircraft has been considered coming across the gun position at an altitude of 100 m and at speed 240 m/s. The twin barrel gun located at the origin of fixed coordinate axes starts engaging the target aircraft from range \(R \) for a period of 3s.

Variation of probability of kill of the aircraft vs number of rounds (Fig. 4) and engagement range (Fig. 5) for DA and proximity-fused ammunitions has been evaluated. It is observed (Fig. 4) that the

<table>
<thead>
<tr>
<th>Rounds</th>
<th>Aircraft</th>
<th>Avionics</th>
<th>Pilot 1</th>
<th>Pilot 2</th>
<th>Fuselage fuel tank</th>
<th>Wing fuel tanks</th>
<th>Engine 1</th>
<th>Engine 2</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0352</td>
<td>0.0122</td>
<td>0.0049</td>
<td>0.0047</td>
<td>0.0526</td>
<td>0.0585</td>
<td>0.0302</td>
<td>0.0314</td>
<td>0.0883</td>
</tr>
<tr>
<td>4</td>
<td>0.0727</td>
<td>0.0243</td>
<td>0.0100</td>
<td>0.0095</td>
<td>0.1035</td>
<td>0.1148</td>
<td>0.0602</td>
<td>0.0625</td>
<td>0.1702</td>
</tr>
<tr>
<td>6</td>
<td>0.1119</td>
<td>0.0363</td>
<td>0.0151</td>
<td>0.0143</td>
<td>0.1527</td>
<td>0.1688</td>
<td>0.0901</td>
<td>0.0935</td>
<td>0.2461</td>
</tr>
<tr>
<td>8</td>
<td>0.1520</td>
<td>0.0482</td>
<td>0.0203</td>
<td>0.0193</td>
<td>0.2003</td>
<td>0.2206</td>
<td>0.1197</td>
<td>0.1242</td>
<td>0.3163</td>
</tr>
<tr>
<td>10</td>
<td>0.1926</td>
<td>0.0601</td>
<td>0.0236</td>
<td>0.0244</td>
<td>0.2462</td>
<td>0.2703</td>
<td>0.1492</td>
<td>0.1547</td>
<td>0.3811</td>
</tr>
<tr>
<td>12</td>
<td>0.2332</td>
<td>0.0718</td>
<td>0.0311</td>
<td>0.0296</td>
<td>0.2904</td>
<td>0.3178</td>
<td>0.1784</td>
<td>0.1849</td>
<td>0.4407</td>
</tr>
<tr>
<td>14</td>
<td>0.2735</td>
<td>0.0835</td>
<td>0.0367</td>
<td>0.0349</td>
<td>0.3329</td>
<td>0.3632</td>
<td>0.2073</td>
<td>0.2148</td>
<td>0.4955</td>
</tr>
<tr>
<td>16</td>
<td>0.3131</td>
<td>0.0950</td>
<td>0.0423</td>
<td>0.0403</td>
<td>0.3738</td>
<td>0.4064</td>
<td>0.2360</td>
<td>0.2444</td>
<td>0.5459</td>
</tr>
<tr>
<td>18</td>
<td>0.3518</td>
<td>0.1065</td>
<td>0.0481</td>
<td>0.0459</td>
<td>0.4130</td>
<td>0.4476</td>
<td>0.2644</td>
<td>0.2736</td>
<td>0.5919</td>
</tr>
<tr>
<td>20</td>
<td>0.3894</td>
<td>0.1178</td>
<td>0.0540</td>
<td>0.0516</td>
<td>0.4505</td>
<td>0.4867</td>
<td>0.2924</td>
<td>0.3024</td>
<td>0.6340</td>
</tr>
<tr>
<td>22</td>
<td>0.4257</td>
<td>0.1291</td>
<td>0.0601</td>
<td>0.0574</td>
<td>0.4864</td>
<td>0.5238</td>
<td>0.3201</td>
<td>0.3309</td>
<td>0.6724</td>
</tr>
<tr>
<td>24</td>
<td>0.4607</td>
<td>0.1402</td>
<td>0.0662</td>
<td>0.0633</td>
<td>0.5207</td>
<td>0.5590</td>
<td>0.3474</td>
<td>0.3589</td>
<td>0.7073</td>
</tr>
<tr>
<td>26</td>
<td>0.4942</td>
<td>0.1512</td>
<td>0.0725</td>
<td>0.0694</td>
<td>0.5534</td>
<td>0.5923</td>
<td>0.3743</td>
<td>0.3864</td>
<td>0.7390</td>
</tr>
<tr>
<td>28</td>
<td>0.5261</td>
<td>0.1620</td>
<td>0.0789</td>
<td>0.0756</td>
<td>0.5845</td>
<td>0.6236</td>
<td>0.4007</td>
<td>0.4135</td>
<td>0.7678</td>
</tr>
<tr>
<td>30</td>
<td>0.5564</td>
<td>0.1728</td>
<td>0.0855</td>
<td>0.0819</td>
<td>0.6140</td>
<td>0.6532</td>
<td>0.4268</td>
<td>0.4401</td>
<td>0.7937</td>
</tr>
</tbody>
</table>

Table 5. Variation of probability of kill of the aircraft and its five vital parts due to VT-fused ammunition (engagement range = 2000 m)
cumulative probability of kill increases as the number of rounds fired increases in all cases, but it decreases with the engagement range (Fig. 5). It is observed that in the present study, the cumulative kill probability due to DA charge is higher compared to that in the earlier study. It is due to the higher dimensions of the vital parts, specially for pilot. Even if the shell hits the outer structure of a part, it is being treated as killed. The second reason is increase in the number of vital parts. But in the case of proximity-fused ammunition, the vital part can be treated as killed only when the fragment penetrates the outer structure and hits the component at an internal location with the required energy to kill the vital part. This is the reason why the cumulative kill probability of the aircraft, in the case of proximity-fused ammunition is lower compared to the earlier model. Another reason is redundancy of some of the vital parts.

ACKNOWLEDGEMENT

The authors are thankful to the Director, Centre for Aeronautical Systems Studies & Analyses (CASSA), Bangalore, for providing encouragement during the preparation of this paper and also for giving permission to publish it.

REFERENCES

1 Ball, Rober E. The fundamentals of aircraft combat survivability analyses and design. AIAA Education Series.

Contributors

Dr VP Singh received his MSc (Maths) in 1965 and PhD in Shock Waves from the University of Delhi, in 1972. He joined DRDO in 1966 at the Centre for Aeronautical Systems Studies & Analyses (CASSA), Bangalore and is currently heading the Weapon Systems Evaluation Group. He is a member of the Aeronautical Society of India, Operational Research Society of India and Computer Society of India. He has published more than 45 research papers in national/international journals, three books and one monograph.

Mr Yuvraj Singh received his MSc from Meerut University, in 1977. He joined DRDO in 1984 and is presently working as Senior Scientist at CASSA, Bangalore. He is a member of the Operational Research Society of India and Aeronautical Society of India.
APPENDIX 1

Projection of Triangular Faces over N-Plane and their Overlapping by Each Other

The projection of a triangular face over a plane normal to the line joining the centre of aircraft and the gun position (N-plane, in Ref. 2 it is called D-plane) will be a triangle or a straight line. Computations of the vertices of the projected triangles on N-plane have been discussed in details².

For the determination of hit probability of a triangle or solid angle subtended, it is important to know, whether a particular triangular element is on the side of aircraft facing the source point of the projectile, or is on the other sides. This can be decided by considering the angle between the line joining the source point to the geometric centre of the triangular element and the normal to the triangular element at its geometric centre, as given below.

In the following paragraphs source point of projectile means the gunpoint while finding hit probabilities. But while estimation of solid angle, the source point means the point where shell explodes, i.e. source point of fragments.

Let \((u_i, v_i, w_i)\) for \(i = 1, 2, 3\), \((u_g, v_g, w_g)\) and \((u_e, v_e, w_e)\), be the coordinates of the vertices of a triangular face, the source point \(G\) of the projectile, and geometric centre \(C\) of the triangular face, respectively, wrt 2nd frame of reference (moving frame with origin as the centre of the aircraft²). Then

\[
\begin{align*}
 u_c &= \frac{1}{3} \sum u_i \\
 v_c &= \frac{1}{3} \sum v_i \\
 w_c &= \frac{1}{3} \sum w_i
\end{align*}
\]

The direction cosines (DCs) of the line joining the points \(G\) and \(C\) are:

\[
\begin{align*}
 l &= \frac{(u_c - u_g)}{D_s} \\
 m &= \frac{(v_c - v_g)}{D_s} \\
 n &= \frac{(w_c - w_g)}{D_s} \\
 D_s &= \sqrt{\sum (u_c - u_g)^2}
\end{align*}
\]

DCs \((a, b, c)\) of the normal to a triangular surface, the coordinates of whose apexes are \((u_i, v_i, w_i)\) for \(i = 1, 2, 3\) can be obtained as

\[
\begin{align*}
 a &= \frac{A}{\sqrt{A^2 + B^2 + C^2}} \\
 b &= \frac{B}{\sqrt{A^2 + B^2 + C^2}} \\
 c &= \frac{C}{\sqrt{A^2 + B^2 + C^2}}
\end{align*}
\]

where

\[
\begin{align*}
 A &= \begin{vmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \end{vmatrix} \\
 B &= \begin{vmatrix} u_1 & v_1 & 1 \\ u_2 & v_2 & 1 \\ u_3 & v_3 & 1 \end{vmatrix} \\
 C &= \begin{vmatrix} u_1 & v_1 & 1 \\ u_2 & v_2 & 1 \\ u_3 & v_3 & 1 \end{vmatrix}
\end{align*}
\]

Let \(\alpha\) is the angle between line \(\overrightarrow{GC}\) and normal to the triangular face then

\[
\alpha = \cos^{-1}(al + bm + cn)
\]

\(\alpha \leq 90^\circ\) \(\Rightarrow\) Triangle is facing opposite to the source point \(G\)

\(\alpha > 90^\circ\) \(\Rightarrow\) Triangle is facing towards the source point \(G\) and can get impact provided it is not being overlapped by some other triangular face of the aircraft.

To know that the \(i^{th}\) triangle is overlapped wholly or partially by another \(j^{th}\) triangle, the following method is to be adopted:
Let \((s_{ik}, t_{ik}), (s_{jk}, t_{jk}), k = 1,3\), be respectively the coordinates of the corners of projection of \(i^{th}\) and \(j^{th}\) triangle of the aircraft over N-plane wrt point \(G\). These triangles are further subdivided into smaller rectangular meshes in order to assess the overlapped area.

Let \((s_o, t_o)\) be the central point of a typical rectangle of the \(i^{th}\) triangle. If this point falls on the \(j^{th}\) triangle formed by the vertices \((s_{jk}, t_{jk})\), \(k = 1,3\) then it implies that this rectangle is overlapped by the \(j^{th}\) triangular face. If it is not covered by \(j^{th}\) triangle, other triangles are tested. Similar test is applied to all the rectangular elements of the \(i^{th}\) triangle. Thus if all the rectangular elements are not covered by any other triangle, it implies that this triangle is not being overlapped by any of the triangles and can be considered to find solid angle or hit probability.

Let a rectangle with centre \(C_p(s_o, t_o)\) is overlapped by \(j^{th}\) triangle. In that case it has to be checked whether the \(j^{th}\) triangular face is near to the source point of the projectile or the \(i^{th}\) triangular face is nearer. Whichever triangle is nearer, it will be overlapping other. It can be done in the following steps:

(a) Let a 3\(^{rd}\) coordinate system, OST, be defined with origin at \(O\) and S-T plane being normal to line joining projectile and centre of the aircraft (N-plane). Direction cosines of OS and OT axis wrt 1\(^{st}\) frame of reference is a fixed coordinate frame with origin fixed on earth surface and x-axis along the flight path of the aircraft) are given by

\[
\begin{align*}
I_i &= \frac{l_i}{\sqrt{1-n_i^2}}, \quad -l_i, \quad n_i \left(\frac{-n_1 l_i - m_i n_1}{\sqrt{1-n_i^2}}, \frac{m_i n_1 - n_i l_i}{\sqrt{1-n_i^2}}, 0 \right)
\end{align*}
\]

where \(l_i, m_i, n_i\) are DCs of line GO.

(b) Let DCs of the line, joining points \(c(s_{oj}, t_{oj})\) and source point of the projectile \(G\) wrt 3\(^{rd}\) frame are \((l_j', m_j', n_j')\).

(c) Let \((l_i', m_i', n_i')\) be the DCs of \(QC_p\) with reference to 1\(^{st}\) frame. Thus

\[
\begin{align*}
l_i' &= l_i' + m_i' n_1 + n_i' l_1, \\
m_i' &= l_i' m_1 + m_i m_1 + n_i n_1, \\
n_i' &= l_i' n_1 + m_i n_1 + n_i l_1
\end{align*}
\]

where \((l_1, m_1, n_1)\); \((l_j, m_j, n_j)\) and \((l_i, m_i, n_i)\) are the DCs of the axes of 3\(^{rd}\) frame wrt 1\(^{st}\) frame and the DCs of the line \(GC_p\) wrt 2\(^{nd}\) frame say \((l_2, m_2, n_2)\).

(d) Finally find the equation of the line wrt 2\(^{nd}\) frame as the line passes though some point whose coordinate wrt 2\(^{nd}\) frame are known.

(e) Let the line meet the \(i^{th}\) triangular face at point \(O_i\) with coordinates \(O_i(u_{oj}, v_{oj}, w_{oj})\)

\[
\begin{align*}
u_{oj} &= u + l_j R_o, \\
v_{oj} &= v + m_j R_o, \\
w_{oj} &= w + n_j R_o
\end{align*}
\]

\[R_o = \frac{(au + bv + cw + d)}{(al^2 + bm^2 + cn^2)}\]

\[d = au - bv - cw\]

(f) Find the intersection of the line with \(j^{th}\) triangular face \(u_j(u_{oj}, v_{oj}, w_{oj})\) as explained above.

(g) Find the distances of the line \(GO_i\) and \(GO_j\) if \(GO_i > GO_j\) implies that this rectangle is being overlapped by \(j^{th}\) triangular face and need not
be considered to find hit probability or solid angle, $GO_i < GO_j$ means that the rectangle is not being overlapped by j^{th} triangular face.

(h) Same methodology can be used to check overlapping by other triangular faces, i.e. for all j's.

(i) The same method is to be repeated for all the rectangles of the i^{th} triangle on N-plane.