Respiratory Effects of Amifostine and DRDE-07: Probable Prophylactic Agents of Sulphur Mustard in Rats

Seema Singh, Vimal Malviya, Anshoo Gautam, Ram Singh, Uma Pathak, S.K. Raza, and R. Vijayaraghavan

1 Defence Research and Development Establishment, Gwalior-474 002
2 Government M.J.P.G. College, Bhind, MP

ABSTRACT

Amifostine (S-2-[3-aminopropylamino]ethyl phosphorothioate) and one of its analogues, DRDE-07 (S-2-[2-aminoethylamino]ethyl phenyl sulphide) are promising prophylactic agents for sulphur mustard (SM; a blistering agent) toxicity. When given orally, DRDE-07 was more effective than amifostine as a prophylactic agent against SM administered percutaneously. Various pharmacological and toxicological studies are required before the introduction of a chemical as a drug. The respiratory effects of amifostine and DRDE-07 were carried out in rats using a body plethysmograph fitted with a volumetric pressure transducer for sensing the respiratory flow signals. The signals were amplified, digitised, and stored on a personal computer for further analysis. After taking control recordings of respiratory signals, different doses (0.5 LD₅₀, 1.0 LD₅₀ and 2.0 LD₅₀) of amifostine and DRDE-07 were administered orally (LD₅₀ amifostine = 2262 mg/kg; DRDE-07 = 1599 mg/kg), and the respiratory changes were monitored for 4 h. Amifostine and DRDE-07 showed a uniform breathing pattern even in 2.0 LD₅₀ dose. However, a significant dose-dependent decrease in respiratory frequency was observed following amifostine administration. DRDE-07 did not show any significant change. The tidal volume was not altered significantly both in amifostine and DRDE-07 administered animals. The study shows that DRDE-07, even in lethal doses, may not affect the respiration immediately, whereas, amifostine may decrease the respiratory frequency.

Keywords: Amifostine, DRDE-07, toxicity, respiratory frequency, tidal volume, prophylactic agents, sulphur mustard antidote, cytoprotective drug, sulphur mustard

1. INTRODUCTION

The nerve agents and blistering agents continue to be a threat as chemical warfare agents against the armed forces in spite of the control imposed by the Chemical Weapon Convention (CWC). The CWC prohibits the production, storage, transport, and use of chemicals on enemy forces. One such chemical is sulphur mustard (SM), commonly known as mustard gas. It is included in the Schedule I of the CWC. Reports are available of its use in several instances before the CWC came into force. State Parties, that have declared possessing SM, are in the process of destroying it. In spite of the CWC, the threat exists that SM can be used clandestinely during war or by terrorist organisations because of its simple method of preparation.

The chemical name of SM is “2,2’-dichloro diethyl sulphide”, and it is an alkylating agent. SM
causes serious blisters upon contact with human skin. In animal models, it is extremely lethal. Just one microlitre applied on the skin of a mouse or a rat may be lethal in a weeks time. SM forms sulphonium ion in the body and alkylates DNA, leading to DNA strand breaks and cell death5-6. Due to high electrophilic property of the sulphonium ion, SM binds to a variety of cellular macromolecules and death occurs due to multi-organ failure7-8. Eyes, skin, and respiratory tract are the principal target organs of SM toxicity5,9-10.

Several antidotes have been reported for the systemic toxicity of SM in experimental animals, but none of these have been recommended so far8,11-14. SM is highly lipophilic and is absorbed quickly on contact with the skin. The effective method of reducing the toxicity of SM is by decontamination immediately after the contact7. The most commonly used decontaminant is Fuller’s earth (a native form of aluminium silicate) that removes SM by adsorption, thereby reducing the toxicity15. Few chemical decontaminants for human use have also shown very good efficacy16-17.

An effective prophylactic agent against SM is the need of the day, especially for personnel engaged in the destruction of SM and during inspection by the Organisation for Prohibition of Chemical Weapons (OPCW). From a series of aminothiols, two compounds, amifostine (S-2[3-aminopropylamino]ethyl phosphorothioate) and DRDE-07, (S-2[2-aminoethyl-amino]ethyl phenyl sulphide) gave very good protection as a prophylactic agent against SM18-20. When given orally, DRDE-07 was more effective than amifostine as a prophylactic agent against SM administered percutaneously19,21. Various pharmacological and toxicological studies are needed, before the introduction of a chemical as a drug. Several of these studies have been initiated and the effect of amifostine and DRDE-07 on respiratory variables in rats has been reported here.

2. MATERIALS

Randomly bred Wistar male rats (175-225 g, body weight) from DRDE Animal Facility were used. They were housed in polypropylene cages, 4 rats per cage) with dust-free rice husk as bedding material, and were provided with food (supplied by Amruth India Ltd) and water ad libitum. The care and upkeep of the animals were as per the approved guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals, India. This study has the approval of the DRDE’s Animal Ethical Committee.

Amifostine, (S-2[3-aminopropylamino]ethyl phosphorothioate) and DRDE-07, (S-2[2-aminoethyl-amino]ethyl phenyl sulphide) were synthesised in the chemistry laboratory. The compounds were characterised by elemental analysis, IR, 1H NMR, and mass spectral analysis. The purity was assessed by thin layer chromatography. Amifostine and DRDE-07 were used as their hydrochlorides and these were water soluble. All other chemicals used were of analytical grade.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amifostine</td>
<td>(\text{NH}_2\text{-CH}_2\text{-CH}_2\text{-NH}\text{-CH}_2\text{-CH}_2\text{-S-PO}_3\text{-H}_2)</td>
</tr>
<tr>
<td>DRDE-07</td>
<td>(\text{NH}_2\text{-CH}_2\text{-CH}_2\text{-NH}\text{-CH}_2\text{-CH}_2\text{-S-C}_6\text{H}_5)</td>
</tr>
</tbody>
</table>

3. METHODOLOGY

Four rats at a time were restrained in body plethysmographs for the recording of respiratory signals (Fig. 1). The glass plethysmographs (length 140 mm and dia 45 mm) can accommodate rats weighing between 150 g to 250 g. A volumetric pressure transducer (model PT5, Grass Instrument, USA) was used for sensing respiratory flow signals. A continuous air flow of 170 ml.min-1 was maintained into each body plethysmograph using a critical orifice (27 gauge needle). The signals from the individual transducers were amplified using universal amplifiers (Gould, USA). The amplified signals were digitised using an analog-to-digital converter (Metabyte, Taunton, USA) and stored on a personal computer and analysed. The amplified signals were also fed into an oscillograph for recording of breathing pattern (WindoGraf, Gould, USA). A computer programme developed by the University of Pittsburgh, USA for monitoring of respiratory changes in small animals was used for recording of various respiratory variables22. 532
The animals were acclimatised in the body plethysmographs for 30 min. After the acclimatisation, a control recording of respiratory variables was carried out for 30 min. Amifostine and DRDE-07 were given using an oral feeding cannula (20 gauge, Harvard Instruments, USA) and the respiratory variables were recorded for a period of 4 h after administration of the dose. Three doses of amifostine and DRDE-07 (0.5 LD_{50}, 1.0 LD_{50} and 2.0 LD_{50}) were given (oral LD_{50} amifostine = 2262 mg/kg; DRDE-07 = 1599 mg/kg). For each dose, four rats were used. Four rats served as control, and were administered saline only.

All the values obtained were converted as per cent of pre-drug administration values and expressed as mean ± standard error. The means were analysed by one way ANOVA, followed by Dunnett's test. SigmaStat (Jandel Scientific, San Rafael, USA) was used for all the statistical analysis. A probability of less than 0.05 was taken as statistically significant.

4. RESULTS

No rat died during the monitoring period of 4 h following 0.5 LD_{50} and 1.0 LD_{50} of amifostine and DRDE-07. Two rats died during the monitoring period following 2.0 LD_{50} of DRDE-07, but none in the amifostine group. But all the rats administered with 2.0 LD_{50} of amifostine and DRDE-07 died within 24 h. Three rats of amifostine and two rats of DRDE-07 in 1.0 LD_{50} group died within 24 h. All the rats given 0.5 LD_{50} of aminofostine and DRDE-07 survived.

The normal value for tidal volume was 0.260 ± 0.021 ml.min^{-1} and respiratory frequency was 134 ± 5 min^{-1} (mean ± SEM; n = 28). Control animals (saline group) showed a uniform breathing pattern during the 4 h monitoring period (Fig. 2). A dose of 0.5 LD_{50} of amifostine and DRDE-07 also showed a uniform breathing pattern. A dose of 1.0 LD_{50} and 2.0 LD_{50} of amifostine showed a disturbed breathing pattern. There was not much change in the DRDE-07 groups. The breathing patterns of 1.0 LD_{50} amifostine and DRDE-07 are
shown in Figs 3 and 4. Tables 1 and 2 show the respiratory frequency and tidal volume of various doses of amifostine and DRDE-07 calculated from the online computer program. There was a significant dose-dependent and time-dependent decrease in the respiratory frequency following oral administration.
of amifostine. But, DRDE-07 did not show any significant change. The tidal volume was not altered in amifostine and DRDE-07 administered rats.

5. DISCUSSION

Even after several decades of active research, a suitable antidote for the toxic effects of SM has
not been developed. The present method of reducing the toxic effects of SM are by physical and chemical decontamination7,16,17.

Amifostine is extensively studied as a cytoprotective drug23. Amifostine, when given prophylactically for chemotherapeutic agents like cisplatin and
SEEMA, et al.: RESPIRATORY EFFECTS OF AMIFOSTINE AND DRDE-07

cyclophosphamide, has been shown to protect selectively normal tissues without reducing the cytotoxic effects on the cancer cells. Amifostine has also been shown to be effective against carbon tetrachloride-induced liver necrosis, and to protect tissues from the toxicities of radiation and alkylating agents, probably by scavenging the generated free radicals. This triggered interest of the authors in amifostine and its analogues as a prophylactic agent against SM toxicity. Evaluation of these analogues revealed that DRDE-07 is a promising prophylactic agent for SM. The initial studies by the authors revealed that intraperitoneal administration of amifostine was better than DRDE-07, but by the oral route, DRDE-07 showed very good protection against SM than amifostine.

Table 1. Effect of oral administration of amifostine and DRDE-07 on respiratory frequency in rats

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose</th>
<th>1 h</th>
<th>2 h</th>
<th>3 h</th>
<th>4 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Saline</td>
<td>105.9</td>
<td>8.0</td>
<td>107.6</td>
<td>5.3</td>
</tr>
<tr>
<td>Amifostine 0.5 LD₅₀</td>
<td>93.1</td>
<td>1.9</td>
<td>86.0</td>
<td>1.4</td>
<td>84.8</td>
</tr>
<tr>
<td>Amifostine 1.0 LD₅₀</td>
<td>82.5</td>
<td>2.6</td>
<td>74.8</td>
<td>2.9</td>
<td>68.4</td>
</tr>
<tr>
<td>Amifostine 2.0 LD₅₀</td>
<td>82.4</td>
<td>6.1</td>
<td>74.8</td>
<td>2.9</td>
<td>55.8</td>
</tr>
<tr>
<td>DRDE-07 0.5 LD₅₀</td>
<td>93.4</td>
<td>6.1</td>
<td>94.4</td>
<td>5.4</td>
<td>91.3</td>
</tr>
<tr>
<td>DRDE-07 1.0 LD₅₀</td>
<td>98.7</td>
<td>5.1</td>
<td>110.0</td>
<td>10.2</td>
<td>111.9</td>
</tr>
<tr>
<td>DRDE-07 2.0 LD₅₀</td>
<td>117.5</td>
<td>11.7</td>
<td>127.9</td>
<td>11.3</td>
<td>106.7</td>
</tr>
</tbody>
</table>

Table 2. Effect of oral administration of amifostine and DRDE-07 on tidal volume in rats

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose</th>
<th>1 h</th>
<th>2 h</th>
<th>3 h</th>
<th>4 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Saline</td>
<td>90.8</td>
<td>7.7</td>
<td>99.1</td>
<td>9.6</td>
</tr>
<tr>
<td>Amifostine 0.5 LD₅₀</td>
<td>91.0</td>
<td>9.4</td>
<td>96.8</td>
<td>15.6</td>
<td>105.0</td>
</tr>
<tr>
<td>Amifostine 1.0 LD₅₀</td>
<td>112.8</td>
<td>12.2</td>
<td>121.5</td>
<td>12.1</td>
<td>128.5</td>
</tr>
<tr>
<td>Amifostine 2.0 LD₅₀</td>
<td>126.4</td>
<td>16.7</td>
<td>154.1</td>
<td>31.6</td>
<td>162.2</td>
</tr>
<tr>
<td>DRDE-07 0.5 LD₅₀</td>
<td>104.7</td>
<td>8.4</td>
<td>133.0</td>
<td>14.7</td>
<td>118.4</td>
</tr>
<tr>
<td>DRDE-07 1.0 LD₅₀</td>
<td>109.5</td>
<td>9.5</td>
<td>111.1</td>
<td>18.6</td>
<td>102.5</td>
</tr>
<tr>
<td>DRDE-07 2.0 LD₅₀</td>
<td>111.0</td>
<td></td>
<td>102.5</td>
<td></td>
<td>159.6</td>
</tr>
</tbody>
</table>

F: NS NS NS NS

P: < 0.05 < 0.001 < 0.001

Values are in per cent; mean ± SE (n = 4; *n = 2); * Statistically significant from control of the same time period.
better bioavailability. Amifostine gave a protection of 9.5-fold compared to 27-fold protection of DRDE-07 in mouse model against SM toxicity. But in rat model, both amifostine and DRDE-07 gave about 2-fold to 3-fold protection.

Various pharmacological and toxicological data were generated on amifostine and DRDE-07. The earlier study by the authors revealed that oral administration of DRDE-07 induced a dose-dependent decrease in mean arterial blood pressure and the effects were pronounced at 1.0 LD_50 and 2.0 LD_50 doses. Oral administration of amifostine also decreased mean arterial blood pressure at 1.0 LD_50 and 2.0 LD_50 doses (unpublished). The computer program developed for measuring respiratory variables of inhaled chemicals was used conveniently for the oral administration of amifostine and DRDE-07.

In the present study, a significant dose-dependent and time-dependent decrease in respiratory frequency were observed following oral administration of amifostine. But, no significant change was observed following oral administration of DRDE-07. The changes that were observed following oral administration of amifostine were also of slow onset. A variety of drugs that act as the central nervous system depressants, viz., general anaesthetics, opioid analgesics, sedatives, and hypnotics cause a depression of respiration, and respiratory stimulants like doxapram and nikethamide cause an increase in the respiratory frequency and tidal volume. DRDE-07 did change the respiratory frequency, showing that it may not have any depressant or stimulant action on the central nervous system. The decrease in respiratory frequency shown by amifostine may be due to its central or peripheral action.

The present study shows that DRDE-07, even in lethal doses, may not affect the respiration immediately, whereas amifostine may decrease the respiratory frequency.

ACKNOWLEDGEMENTS

The authors are grateful to Mr K. Sekhar, Director, Defence Research & Development Establishment, Gwalior for his constant encouragement and support.

REFERENCES

Contributors

Ms Seema Singh obtained her BSc (Life Sciences) from the Purvanchal University, Varanasi. She joined Defence Research and Development Establishment (DRDE), Gwalior, in 2003 as Senior Technical Assistant in the Division of Pharmacology and Toxicology. Her areas of research include: Safety evaluation of various toxicants and development of antidotes against chemical warfare agents.

Mr Vimal Malviya obtained his MSc (Zoology) from the Jiwaji University. He is working as Head, Dept of Zoology, Government M.J.P.G. College, Bhind, MP. His areas of research include: Cardiovascular and respiratory safety studies of different antidotes.

Ms Anshoo Gautam obtained her MSc (Biochemistry) from the B.R. Ambedker University, Agra. She joined DRDE, Gwalior, as Junior Research Fellow, and presently, working as Senior Research Fellow in the Division of Pharmacology and Toxicology. She is working on the biochemical changes induced by chemical warfare agents, and screening of antidote for her doctoral thesis.

Mr Ram Singh obtained his MSc (Zoology) from the Jiwaji University, Gwalior. He joined DRDE, Gwalior, in 1986. Presently, he is working as Technical Officer B. His areas of research include: Safety evaluation of chemical warfare agents and development of antidotes. He has published several papers in national/international journals.
Dr (Ms) Uma Pathak obtained her MSc (Chemistry) from the Kumaon University, Nainital, in 1992. She joined DRDE, Gwalior, as Research Fellow in 1993 and was appointed as Scientist B in 1996. Presently, she is working as Scientist ‘C’. Her areas of research include development of antidotes against highly toxic chemical warfare agents. She has two international patents to her credit and has published several papers in national/international journals.

Dr S.K. Raza obtained his PhD (Chemistry) from the Aligarh Muslim University. Presently, he is working as Dy Director at the DRDE, Gwalior. His area of research include: Development of antidotes against highly toxic chemical warfare agents, and analysis of toxicants and their metabolites using mass spectrometric techniques. He was awarded Nehru Centenary British Fellowship and was a Visiting Scientist at the St. Thomas Hospital, University of London, UK, during 1992-93. He has three international patents to his credit and has published more than 40 papers in national/international journals.

Dr R. Vijayaraghavan obtained his MSc (Pharmacology) from the JIPMER, Pondicherry, and PhD from the Jiwaji University, Gwalior. He worked as a Visiting Research Associate at the University of Pittsburgh, USA, during 1991-1993. Currently, he is Associate Director of DRDE, Gwalior. His areas of research include: Safety evaluation of chemicals, and development of antidotes against chemical warfare agents. He has more than 100 research papers published in various national/international journals.