Flow of a Thermoviscous Fluid through an Annular Tube with Constriction

R. Muthuraj and S. Srinivas

1Arulmigu Meenakshi Amman College of Engineering, Kanchipuram
2School of Science and Humanities, VIT, Vellore-632 014

ABSTRACT

The flow of thermoviscous fluid within the annulus of circular cylinders with a local constriction at the outer wall is investigated analytically, assuming that the constriction is non-symmetric wrt the radial distance. Analytical solutions for velocity and temperature fields have been obtained. The effect of the shape parameter of the constriction on velocity, temperature, Nusselt number, and flow rate are illustrated graphically and discussed.

Keywords: Thermoviscous fluid, constriction, annular region, Nusselt number, flow characteristics, flow rate, heat transfer

NOMENCLATURE

- a: Radius of the inner wall
- b: Thermal gradient vector
- b_0: Radius of the outer wall
- c: Specific heat
- C_1, C_2: Nondimensional pressure and temperature gradients respectively.
- d: Deformation rate tensor
- $b(x)$: Radius of the tube in the constricted region
- h: Nondimensional form of the radius of the tube in the constricted region
- h^*: Heat flux bivector
- I_0, I_1: Modified Bessel functions of first kind
- L_0: Length of the constricted region
- L_1: Location of the constriction
- m_1: Thermoviscous parameter
- $n (\geq 2)$: Shape parameter of the constriction
- Nu: Nusselt number
- Q: Flow rate
- r: Radial distance
- T_a: Temperature at the inner wall
- T_b: Temperature at the outer wall
- T: Temperature in the nondimensional form
- T_∞: Mean mixed temperature
- v_k: K^{th} component of velocity
- ω: Velocity distribution
- X_o: Point at which maximum constriction located
- ρ: Density
1. Introduction

Curved pipe/annular configurations are of immense practical importance in almost all piping systems, the human cardiovascular system, and in several engineering devices such as heat and mass exchanges, chemical reactors, chromatography columns, and other processing equipment. Owing to the wide range of applications, the interest in the study of flow characteristics in these configurations has grown enormously during the last decades. Jakob and Rees\(^1\) made a theoretical investigation of the problem of heat transfer through annulus space when the fluid flow is laminar and there is a uniform heating either from outside, from inside or from both. Reynolds\(^2\), et al., McCuen\(^3,4\), et al., Leung\(^5\) et al. of Stanford University have made numerous theoretical and experimental studies of both laminar and turbulent heat transfer in annuli taking various types of wall temperature distributions. Reynolds\(^6\), et al. have also included a bibliography of the related work on this aspect. Shigechi\(^7\), et al. have made an analysis on laminar flow and heat transfer in annuli taking various types of wall temperature distributions. Reynolds\(^6\), et al. have also included a bibliography of the related work on this aspect. Shigechi\(^7\), et al. have made an analysis on laminar flow and heat transfer in concentric annuli with moving core to obtain the effect of relative velocity on friction factor and Nusselt number. Datta\(^8\), et al. analysed the flow and heat transfer of a dusty fluid (Saffman model) within the annulus of circular cylinders under a pulsatile pressure gradient acting along its length. Let \(a\) and \(b\) be the radii of the inner and outer walls and the let these be kept at temperature \(T_a\) and \(T_b\) respectively. The density and the viscosity of the fluid are assumed to be constant. The profile of the non-symmetric constriction is given by Haldar\(^11\) as

\[
\frac{b(x)}{b_0} = 1 - A \left[L^n_0 (x - L_1) - (x - L_1)^n \right] \\
L_1 < x < L_1 + L_0 = 1 \quad \text{otherwise}
\]

where

\[
A = \left(\frac{\varepsilon}{b_0 L^n} \right) \left(\frac{n}{n-1} \right)^{n-1}
\]

Here, \(\varepsilon\) denotes the maximum height of the constriction located at \(x_0 = L_1 + \frac{L_0}{n^{1/(n-1)}}\)

2. Formulation

Consider the laminar motion of a thermoviscous fluid flow past a mild constriction formed in a cylindrical tube in its annular region (Fig. 1). The flow is steady and of second-order incompressible thermoviscous fluid contained between two cylinders under a constant pressure gradient acting along its length. Let \(a\) and \(b\) be the radii of the inner and outer walls and the let these be kept at temperature \(T_a\) and \(T_b\) respectively. The density and the viscosity of the fluid are assumed to be constant. The profile of the non-symmetric constriction is given by Haldar\(^11\) as

\[
\frac{b(x)}{b_0} = 1 - A \left[L^n_0 (x - L_1) - (x - L_1)^n \right] \\
L_1 < x < L_1 + L_0 = 1 \quad \text{otherwise}
\]

where

\[
A = \left(\frac{\varepsilon}{b_0 L^n} \right) \left(\frac{n}{n-1} \right)^{n-1}
\]

Here, \(\varepsilon\) denotes the maximum height of the constriction located at \(x_0 = L_1 + \frac{L_0}{n^{1/(n-1)}}\)
As proposed by Koh and Eringen\(^1\), the stress tensor and heat flux bivector for the second-order thermoviscous fluids are given by

\[
\begin{align*}
t &= -\alpha_1 \dot{a} + \alpha_2 \dot{d} + \alpha_3 \dot{c} + \alpha_4 \dot{b} + \alpha_5 (\dot{e} \dot{d} - \dot{b} \dot{d}) \\
h^* &= \beta_1 \dot{a} + \beta_4 (\dot{b} \dot{d} - \dot{b} \dot{d}) \\
2d_{k,m} &= v_{k,m} + v_{m,k},
\end{align*}
\]

under the assumption that the motion is slow forces, heat sources within the flow region and velocity and temperature. In the absence of external terms, which are nonlinear in the derivatives of the equations have been simplified by neglecting the

thermoviscous fluids are given by

\[
\begin{align*}
\alpha_1 &= \alpha_{1000} I + \alpha_{1020} \text{tr} \text{d} + \alpha_{1020} \text{tr}^2 \\
\alpha_2 &= \alpha_{2000} I + \alpha_{2002} \text{tr} \text{d} + \alpha_{2002} \text{tr}^2 \\
\alpha_3 &= \alpha_{3000} I + \alpha_{3020} \text{tr} \text{d} \\
\alpha_4 &= \alpha_{4000} I + \alpha_{4002} \text{tr} \text{d} \\
\beta_1 &= \beta_{1001} + \beta_{1012} \text{tr} \text{d},
\end{align*}
\]

in which \(r\) is the radial distance, \(C_1\) and \(C_2\) are nondimensional pressure and temperature gradients respectively, the Eqns (12) and (13) reduce to

\[
\begin{align*}
\nabla^2 \omega - m_t \omega &= -m_2 \\
\nabla^2 \omega - b_2 \nabla^2 T &= b_3 \omega
\end{align*}
\]

together with boundary conditions

\[
\begin{align*}
\omega(1) &= 0; \quad \omega(h) = 0 \\
T(1) &= 0; \quad T(h) = 1
\end{align*}
\]

in which

\[
\begin{align*}
h &= \frac{b(x)}{b_0} \quad b_1 &= \frac{4\rho \alpha_6 (T_b - T_e)^2}{\alpha_3^2} c^2 \\
b_2 &= \frac{4\rho a^2 b_1}{\alpha_3 b_3 c^2} \quad b_3 &= \frac{2\rho a c^2}{b_3} \\
m_1 &= \frac{b_1 b_3}{b_1 - b_2} \quad m_2 &= \frac{b_2 c_1}{b_1 - b_2}
\end{align*}
\]

From Eqns (17) and (18), one obtains the velocity and temperature distribution, subject to the relevant boundary conditions

\[
\begin{align*}
\omega(r) &= m_2 \frac{m_1}{m_1^2} \\
T(r) &= m_2 \frac{m_1 (m_1 - b_3)}{m_1^2 b_2} \left(\frac{k_0 (m_1 h) I_0 (m_1 h) - I_0 (m_1 h) k_0 (m_1 h) + k_0 (m_1 h) I_0 (m_1 h) - I_0 (m_1 h) k_0 (m_1 h)}{k_0 (m_1 h) I_0 (m_1 h) - I_0 (m_1 h) k_0 (m_1 h)} \right)
\end{align*}
\]

The heat transfer coefficient, characterised by Nusselt number \(\langle Nu\rangle\) on the tube boundary is

\[
\frac{m_2 b_2 (r^2 - 1) + \log \frac{r^2}{r^2 - 1}}{m_2 b_2 (r^2 - 1) + \log \frac{r^2}{r^2 - 1}} = \frac{m_2 b_2 (r^2 - 1) + \log \frac{r^2}{r^2 - 1}}{m_2 b_2 (r^2 - 1) + \log \frac{r^2}{r^2 - 1}}
\]
\[Nu = \left(\frac{m_2(m_1 - b_3)}{m_1 m_1 b_2} \right) \left\{ \frac{[k_1(\sqrt{m_1} h)I_0(\sqrt{m_1}) - I_0(\sqrt{m_1} h)] +}{I_1(\sqrt{m_1} h[k_0(\sqrt{m_1}) - k_0(\sqrt{m_1} h)])} \right\} \]

\[+ \frac{m_2 b_3}{2m_1 b_2} h + \frac{1}{h \log h} \left(1 + \frac{m_2 b_3}{4m_1 b_2}(1 - h^2) \right) \]

Flow rate is defined by

\[Q = 2\pi b(x) \int_{a}^{b} dr \]

(25)

Incorporating Eqn (22) in Eqn (25) and on rearrangement

\[Q = \left(\frac{2\pi m_2}{m_1} \right) \times \left\{ \frac{1}{k_0(\sqrt{m_1})I_0(\sqrt{m_1}) - I_0(\sqrt{m_1} h)k_0(\sqrt{m_1})} \right\} \times \]

\[\left[\frac{h}{\sqrt{m_1}} \left[I_1(\sqrt{m_1} h) \left(k_0(\sqrt{m_1}) - k_0(\sqrt{m_1} h) \right) \right] \right] \]

\[- \frac{1 - h^2}{2} \left[k_0(\sqrt{m_1} h)I_0(\sqrt{m_1}) - I_0(\sqrt{m_1} h)k_0(\sqrt{m_1}) \right] \]

\[- \frac{1}{\sqrt{m_1}} \left[I_1(\sqrt{m_1} h) \left(k_0(\sqrt{m_1}) - k_0(\sqrt{m_1} h) \right) \right] \]

(26)

Mean mixed temperature can be obtained from

\[T_* = \frac{2\pi \int_{a}^{b(x)} T \omega \ rdr}{2\pi \int_{a}^{b(x)} \omega \ rdr} \]

(27)

3. DISCUSSIONS

The problem of flow of a thermoviscous fluid through an annular tube with constriction is considered. To get the physical insight of the problem, velocity, temperature field, flow rate, Nusselt number have been discussed by assigning numerical values to various parameters like thermoviscous parameter \((m_1)\) and shape parameter \((n)\) of the constriction which characterise the flow phenomena. The influences of these parameters on the velocity, temperature, flow rate and Nusselt number have been studied and are presented graphically.

The profiles of the velocity and temperature field are illustrated in Figs 2 and 3 for different values of \(m_1\). The velocity profiles become more flat as the thermoviscous parameter decreases. It can be noticed that there is an increase in the velocity of the fluid with the increase of \(n\). The decrease of the temperature with increase can be noticed from Fig. 3. Further there is a slight increase in temperature profile (for a fixed \(m_1\)) with the increase of \(n\).

Effect of \(n\) on the flow rate is shown in Fig. 4, flow rate decrease with the increase of \(n\). From Fig. 4, it can be noticed that the mass flow decreases with the increase of thermoviscous parameter. The heat-transfer coefficient, characterised by Nusselt number \((Nu)\) on the boundary is depicted in Fig. 5. It is observed that Nusselt number increases with the increase of \(n\). From Fig. 5 it can be noticed that the Nusselt number decreases with the increase of thermoviscous parameter.

To make a comparative study, in Figs 6 and 7 the variation of the mass flow and Nusselt number with for the case of constricted tube (without inner cylinder). It is observed that mass flow decreases with increases of \(n\) [Fig. 6]. Further, mass flow decreases with increase of \(m_1\) as noticed in the annular tube with constriction. Figure 7 shows that the Nusselt number increases with the increase of \(m_1\) in contrast to the case of annular tube with constriction.

The results of the present study will hopefully enable a better understanding of the clinical applications.
Figure 2. Velocity distribution.

Figure 3. Temperature distribution.

Figure 4. Flow rate versus shape parameter of the constriction.

Figure 5. Nusselt number versus shape parameter of the constriction.
such as endoscope problem and blood flow in a catheterised artery.

ACKNOWLEDGEMENTS

Authors acknowledge the financial support from DRDO, under the project number ERIP/ER/0304285/M/01. Authors would like to thank the anonymous referee for their helpful suggestions.

REFERENCES

Contributors

Mr R. Muthuraj obtained his MPhil from the School of Mathematics, Madurai Kamaraj University, Madurai. Presently, he is working as Senior Lecturer in Arulmigu Meenakshi Amman College of Engineering, Vadavamandal, Kanchipuram. He is pursuing his PhD at VIT University, Vellore.

Dr S. Srinivas obtained his PhD from the National Institute of Technology (formerly REC), Warangal. He has research interests in non-Newtonian fluid flows, heat transfer, and information retrieval. He has published 30 papers in national and international journals. He is Principal Investigator to a DRDO sponsored major research project in the field of fluid dynamics, Co-investigator to one DRDO-sponsored project and one DST major research project. Presently, he is Associate Professor in the School of Science and Humanities, VIT University, Vellore.