Synthesis of Lithium-doped Zirconia Nanoceramics of Controlled Oxygen Vacancies

S. Mohapatra and S. Ram

Indian Institute of Technology, Kharagpur-721 302

ABSTRACT

Doping of lithium (Li⁺) cations results in stabilised zirconia, especially in tetragonal (t) crystal structure, i.e., Li⁺: t-ZrO₂. It is useful to vary oxygen vacancies in Li⁺: ZrO₂ powders. The Li⁺: t-ZrO₂ powder having 1-5 mol per cent Li⁺, are obtained by using a novel chemical method of a polymer precursor, which consists of Li⁺ and Zr⁴⁺ cations capping in polymer molecules of polyvinyl alcohol (PVA) and sucrose. The results are analysed in terms of XRD and microstructure of Li⁺: t-ZrO₂ powders prepared under specific conditions of heating the precursor in air at elevated temperatures. The polymer precursor consists of fibrils of average 120 m length and 0.5–1.0 m dia. A refined Li⁺: t-ZrO₂ powder (15-25 nm crystallite size) occurs after heating the precursor at 500–600 °C for 2 h in air.

Keywords: Stabilised zirconia, ceramics, nanoceramics, microstructure, synthesis, cationic doping

1. INTRODUCTION

Interest in nanocrystalline zirconia (ZrO₂) ceramics, of average diameter in the 2–100 nm range, has increased during recent years, because of their properties (e.g., sintering ability, mechanical toughness, superplastic behaviour) are significantly different from those in a coarse grained structure. At atmospheric pressure, pure ZrO₂ exists in three well known polymorphs of P2₁/c monoclinic (m), P4₂/1nnc tetragonal (t), and F m₃m cubic fluoride (c) crystal structures, where m-ZrO₂ is the equilibrium bulk structure at low temperatures. Efforts have been made to obtain the high temperature phase t-ZrO₂ or c-ZrO₂ in a thermodynamically stable state at low temperatures using doping of MgO, CaO, Y₂O₃, or other similar oxides. Emphasis has been given for the synthesis of such phases either by undersized or oversized cationic doping using hydrothermal processes, and sol-gel processes.

In this study, synthesis of a nanoceramic t-ZrO₂ powder has been carried out using doping of undersized cations such as Li⁺. Murata et al. reported that Li⁺–modified ZrO₂ offers specific catalytic activity in oxidative coupling of methane to give C₂ hydrocarbon. A forced hydrolysis (by adding NH₄OH) of dispersed Li⁺ and Zr⁴⁺ cations via polymer molecules of polyvinyl alcohol (PVA) and sucrose in water was used to obtain a polymer precursor. For Li⁺ limited to 5.0 mol per cent, no Zr⁴⁺–Li⁺ phase separation encountered during the reaction. Otherwise, Li⁺ hardly dissolves in zirconium hydroxides. A reconstructive decomposition follows on heating the polymer gel (dried and pulverised into a powder) in air, forming a refined Li⁺: t-ZrO₂ powder at temperatures as low as 500–600 °C.
The results are analysed in terms of XRD and microstructure of the Li+: t-ZrO₂ powders.

2. EXPERIMENTAL DETAILS

Separate solutions were obtained for ZrOCl₂.8H₂O in distilled water and Li₂CO₃ in diluted HCl each of 1.0 M concentration. A transparent colourless solution appeared in homogeneous mixing in two components. A similar mixed solution was obtained in 3.0 g/dl PVA and 30.0 g/dl sucrose in distilled water. To form a polymer precursor, the PVA-sucrose solution was added dropwise to the aqueous solution in ZrOCl₂.8H₂O and LiCl (Li₂CO₃ dissolved in HCl) at room temperature. The obtained sample was transferred to a water-cooled bath (Julabo model HD-4) in part to hydrolyse the metal cations by reacting with cold NH₄OH (25 %) at 2–5 °C average temperature. A transparent gel occurred of hydrolysed metal cations as Li⁺-doped ZrO(OH)₂·αH₂O. As much as 5.0 mol per cent Li⁺ (as per the final Li+: ZrO₂ product) could be incorporated in ZrO(OH)₂·αH₂O in a mixed hydroxyl gel (amorphous). Requisite amounts of the reagents used in forming a typical polymer gel (3.0 mol % Li₄O) are given in Table 1. It was observed that, in the solution, the product Li⁺:ZrO(OH)₂·αH₂O continues to react with the water by polycondensation and polymerisation processes. Average pH at this stage had been reduced to 3.5 as we observed and modelled in the case of a monolithic ZrO(OH)₂·αH₂O gel. Washing in cold water separated byproduct chlorides, resulting in a colorless transparent hydroxyl gel, which was then dried at 90-100 °C over a sand bath (Fig. 1).

The process of forming Li⁺:ZrO(OH)₂·αH₂O gel and derived Li⁺: t-ZrO₂ powder is summarised in Fig. 1. The Li⁺ stabilised t-ZrO₂ occurred of nanoparticles by reconstructive thermal decomposition of gel after heating in air at temperatures in the 500–600 °C range. Structures of precursor gels and of those transformed into Li⁺: t-ZrO₂ were studied in terms of XRD using Philips P.W.1710 diffractometer with filtered 0.15418 nm CuKα radiation. Microstructures of the samples were studied by scanning electron micrographs using a JEOL model JSM-5800 SEM. Average Li⁺: t-ZrO₂ crystallite

![Figure 1. Schematic diagram for preparing a Li⁺-modified Zr⁺⁺ polymer precursor and derived Li⁺: ZrO₂ powder.](image-url)
Table 1. Experimental conditions for forming a polymer precursor of Li+-modified ZrO2 hydroxyl gel with PVA-sucrose in cold water

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Solvent</th>
<th>Volume (ml)</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrOCl2, 8H2O</td>
<td>Water</td>
<td>1470</td>
<td>1.0 M</td>
</tr>
<tr>
<td>Li2CO3</td>
<td>Dil HCl</td>
<td>45</td>
<td>1.0 M</td>
</tr>
<tr>
<td>PVA</td>
<td>Water</td>
<td>885</td>
<td>3.0 g/dl</td>
</tr>
<tr>
<td>Sucrose</td>
<td>Water</td>
<td>885</td>
<td>30.0 g/dl</td>
</tr>
</tbody>
</table>

A reaction batch of a 100 g sample in a typical Li+Zr1-xO2.15x composition, with x = 0.02 or 3.0 mol per cent Li+.

size (D) was calculated from fwhm-values (full width at half-maximum values) in the diffraction peaks using the Debye-Scherrer relation.

3. RESULTS AND DISCUSSION

3.1 Formation of Hydroxyl Gel and Derived Li+: t-ZrO2 Powder

Under favorable conditions of temperature and pH, dispersed Zr4+ and Li+ cations in an aqueous solution undergo hydrolysis reaction with the H2O molecules. The reaction, especially in the presence of NH2OH (having a high 12 pH value induces a local chemical potential between the reacting species) in cold condition, can be expressed in this example as follows:

\[xLiCl + xH_2O \rightarrow xLi(OH) + xHCl \]

\[(1-x)ZrOCl_2 + 2(1-x)H_2O \rightarrow (1-x)ZrO(OH)_2 + 2(1-x)HCl \]

\[(1-x)ZrOCl_2 + xLiCl + (2-x)H_2O \rightarrow Li_xZr_{1-x}O_{1-x}(OH)_{2-x} + (2-x)HCl \] (1)

At room temperature, a hydroxyl compound formed in this reaction simultaneously encounters a thermal-induced disintegration as follows:

\[Li_xZr_{1-x}O_{1-x}(OH)_{2-x} \rightarrow Li_{4x}Zr_{1-x}O_{2-1.5x} + (1-0.5x) H_2O \] (2)

At low temperature, an interbridging in LiZr1-xO1-x(OH)2-x molecules succeeds in support of mobile H2O molecules in solution, forming a polymer gel. It plays a crucial role in devising an amorphous gel, which can be expressed as LiZr1-xO1-x(OH)2-x·фH2O. A value of φ = 4–5 is estimated from thermogravimetric analysis of a dried sample at reduced pressure (1-5 mbar) at room temperature.

In the gelation process, Li+ as Li(OH) gets trapped in ZrO(OH)x·αH2O, forming a LiZr1-xO1-x(OH)2-x·фH2O glass gel. Notice ZrO(OH)x·αH2O is a glass gel former whereas Li(OH), which is an ionic compound, serves as a glass modifier. Presence of the polymer molecules of PVA-sucrose during the hydrolysis templates ZrO(OH)x·αH2O in a polymer of extended network over their molecular surfaces. The original sol-gel method involves alkoxides and is expensive one. The present method offers a simple process of hydrolysis type for processing a hydroxyl gel, especially involving the reactions in aqueous medium.

In this method, Li+-modified ZrO(OH)x·αH2O molecules interbridge by means of polycondensation or polymerisation in shape of fibrils (as evidenced from the microstructure in Fig. 2). It is a Li+: [ZrO(OH)x·фH2O]n polymer template in support over PVA-sucrose of effectively planar surfaces. In water, sucrose was hydrolysed to fructose and glucose, which was ultimately oxidised to gluconic acid. A metal-ion complex was formed in the reaction with Zr4+ and Li+ cations. It frames a co-branched polymer (planar) with PVA molecules (of otherwise linear structure), offering a multifunctional role in templateing Zr4+ and Li+ in a metal-ion complex over PVA-gluconic acid polymer molecules.

Another advantage of the organic polymer part is that it serves as a dispersoid and an internal fuel in producing Li+: t-ZrO2 by autocombusting Li+:[ZrO(OH)x·фH2O]n templates at moderate temperatures as low as 500-600 °C in air. Decomposition and in-situ combustion of the precursor evolve a plenty of heat of the combustion, which induces reconstructive Li+: t-ZrO2 nucleation and growth of limited particle sizes by reaction of small fragmented species of precursor over these temperatures. A high degree of gelation following the hydrolysis of the metal cations in reaction with NH2OH appears to be an important factor in this example of deriving Li+: t-ZrO2 of nanoparticles at such low temperatures. Virgin ZrO(OH)x·αH2O yields m-ZrO2 or a mixture
with t-$ZrO_2^{5,9,12,13}$, Marote9, et al. reported a t-m-ZrO_2 mixture by heating $ZrOCl_2$, $8H_2O$ or $ZrCl_4$ in a molten $LiNO_3$ flux at 450 °C. As much Li^+ as 3.4 at per cent incorporates in ZrO_2 in this method. It is not a very viable way for producing Li^+: ZrO_2. Most of Li^+ involved in refluxing evaporates as a byproduct (toxic).

3.2 Microstructure and XRD

Figure 2(a) shows a typical SEM microstructure of polymer precursor gel $LiZr_{1-x}O_{1.5}\cdot(OH)_{x}$·$\varphi H_2O$ ($x = 0.02$), which has been dried at room temperature. It consists of a peculiar polymeric structure of fibrils or thin layers of average 0.5-1.0 μm dia. As long fibrils as 120 μm are present. These fibrils are developed in directional growth and by polycondensation of $LiZr_{1-x}O_{1.5}\cdot(OH)_{x}$·$\varphi H_2O$ molecules in an interconnected network structure (amorphous) over PVA-sucrose polymer molecules of effectively planar surfaces. This involves formation and $in situ$ polycondensation processes of dispersed $LiZr_{1-x}O_{1.5}\cdot(OH)_{x}$·$\varphi H_2O$ in the solution.

On heating, a controlled reconstructive molecular decomposition occurs from the polymer gel of thin fibrils, resulting in a Li^+: t-ZrO_2 powder. A typical micrograph in Fig. 2(b) shows clusters of Li^+: t-ZrO_2 crystallites in derived shapes (100 - 500 nm dia) of precursor of thin fibrils. As can be seen by a close-up of the micrograph in Fig. 2(b), the sample has Li^+: t-ZrO_2 crystallites of rectangular bars (or prisms) of 15-25 nm average dia, which has been correlated to fwhm-values in the XRD peaks in the Debye-Scherer formula (D-20 nm) value. It demonstrates the sample consisting of mostly single crystallites. The final Li^+: t-ZrO_2 size and morphology vary sensitively depending on the Li^+ content and the final calcination temperature.

X-ray diffractogram in Li^+:ZrO_2 powder, after heating the polymer precursor at 500–600 °C in air, has a total of 19 peaks in the 20-100 ° range of the diffraction angle 2θ. A typical diffractogram for 3.0 mol per cent Li^+: t-ZrO_2 powder, heated at 600 °C for 2 h, is given in Fig. 3. As marked by the (hkl) values, all the major peaks are indexed in terms of the lattice reflections from the $P4_{2/mnc}$ tetragonal crystal structure as in the monolithic ZrO_2^{12}. No diffraction peak is visible in independent LiO, confirming the fact that most of the Li^+ used in this reaction is consumed in forming Li^+–doped t-ZrO_2.

In Table 2, the observed values of the interplanar spacings d_{hkl} are fairly reproduced, within a standard deviation of ± 0.0010 nm, assuming average lattice parameters $a = 0.3615$ nm and $c = 0.5201$ nm, with volume $V = 0.0680$ nm3 and density $\rho = 6.01$ g/cm3. In comparison to $\rho = 6.10$ g/cm3 in monolithic t-ZrO_2^{14}, a smaller ρ-value observed in this example is according to smaller ionic size of Li^+ relative to the Zr^{4+} value. As can be analysed by intensities in the diffraction peaks, as described earlier$^{10-12}$, the sample has a small impurity ~ 5 per cent due to incipient growth of m-ZrO_2.

The diffractogram of the precursor gel powder consists of three halos, as shown in the inset of Fig. 2, at wave vectors 18.7 nm$^{-1}$, 29.3 nm$^{-1}$ and
DIFFRACTION ANGLE 2θ (degree)

Figure 3. (a) X-ray diffractogram in $Li^+\cdot t$-ZrO$_2$ nanopowder after 2 h of heating a precursor [of diffractogram in the inset (b)] at 600 °C in air.

38.3 nm$^{-1}$ in three prominent pair distribution functions in the Zr$^{4+}$ and O$^{2-}$ ions in an amorphous structure,

Table 2. Interplanar spacing (d_{hkl}) and relative peak intensities (I_p) in XRD peaks in 3.0 mol per cent $Li^+\cdot t$-ZrO$_2$ powder

<table>
<thead>
<tr>
<th>d_{hkl} (nm)</th>
<th>Bulk</th>
<th>I_p</th>
<th>h</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3636*</td>
<td>0.3630</td>
<td>08</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.3160*</td>
<td>0.3156</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.2956</td>
<td>0.2952</td>
<td>100</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.2843*</td>
<td>0.2842</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.2600</td>
<td>0.2593</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0.2540</td>
<td>0.2537</td>
<td>19</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.1790</td>
<td>0.1800</td>
<td>44</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0.1810</td>
<td>0.1803</td>
<td>35</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1560</td>
<td>0.1557</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0.1540</td>
<td>0.1534</td>
<td>28</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.1481</td>
<td>0.1476</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0.1305</td>
<td>0.1296</td>
<td>05</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0.1272</td>
<td>0.1268</td>
<td>07</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0.1178</td>
<td>0.1177</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0.1168</td>
<td>0.1167</td>
<td>09</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.1547</td>
<td>0.1545</td>
<td>06</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0.1372</td>
<td>0.1369</td>
<td>07</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.1053</td>
<td>0.1051</td>
<td>06</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0.1045</td>
<td>0.1041</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The bulk values, with $a = 0.3592$ nm and $c = 0.5168$ nm, are reported from literature11. *m-ZrO$_2$.

which plays a crucial role in deriving Li^+–doped t-ZrO$_2$ in this experiment. Otherwise, the precipitate often decomposes to hydrated zirconia $ZrO_2\cdot yH_2O$, which hardly crystallises into t-ZrO$_2$.

4. CONCLUSION

A novel chemical method, using hydrolysis of dispersed Zr^{4+} and Li^+ cations via polymer molecules of PVA and sucrose in cold water, is developed and explored to obtain Li^+–doped t-ZrO$_2$. Adding NH_4OH hydrolysates Zr^{4+} and Li^+ as a hydroxyl compound $LiZr_{1-x}O_{0.5-x}(OH)_{2.5-x}\cdot yH_2O$, which occurs in shapes of thin fibrils in support over the PVA-sucrose polymer molecules. A Li^+– t-ZrO$_2$ powder occurs on heating the precursor at temperature as low as 500 °C in air. The PVA-sucrose polymer molecules offer three important functions: (i) a solid dispersoid, (ii) a templateing agent, and (iii) a solid fuel. The sample, having 3-5 mol per cent Li^+, consists of as small crystallites as 10-25 nm, in shape of the tetraoids, unless heating above 600 °C. In comparison to traditional sol-gel process, this is a rather simple method for processing of shape-controlled ceramics such as ZrO$_2$ and its derivatives.

ACKNOWLEDGEMENTS

This study was financially supported by the Council of Scientific and Industrial Research, Govt of India.

REFERENCES

5. Murase, Y. & Kato, E. Role of water vapour in crystalline growth and tetragonal-monoclinic

14. McClume, W.F. Powder diffraction files JCPDS (Joint Committee on Powder Diffraction Standards). *In* International Centre for Diffraction Data, Swarthmore, PA. (a) 24-1164 (t-ZrO$_2$) and (b) 13-307 (t-ZrO$_2$).

Contributors

Ms S. Mohapatra obtained her MSc (Chemistry) from the Utkal University, Bhubaneswar. Currently, she is pursuing PhD in Materials Science at the Materials Science Centre, IIT Kharagpur. She is the recipient of Senior Research Fellowship (CSIR). Her research areas include: Synthesis and characterisation of lithium and scandium-doped zirconia nanoceramics for applications as solid electrolytes.

Prof S. Ram obtained his PhD (Physics) from the Banaras Hindu University, Varanasi. He was Visiting Scientist at the McMaster University, Canada (1988-89), and Associate Professor at Domain University, France (1989-92). He was Alexander von Humboldt Research Fellow, Germany, 1994-96 and 2004. Presently, he is working as Professor at the IIT Kharagpur. He has published 150 research articles in refereed journals. His research interests include: Synthesis and characterisation of nanomaterials of metals, alloys, ceramics, and composites for practical applications.