Catalytic Reduction of Hazardous Compound (Triethylphosphate) Using Ni Doped CuO Nanoparticles

K. Lakshmi@, K. Kadirvelu*, and P.S. Mohan#

@DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore - 641 046, India
*Department of Chemistry, Bharathiar University, Coimbatore - 641 046, India
#Department of Chemistry, Bharathiar University, Coimbatore - 641 046, India
E-mail: kadirvelukrishna@yahoo.com

ABSTRACT

Nickel doped Copper oxide nanoparticles were prepared by hydrothermal method for catalytic reduction of Triethylphosphate (TEP). It is a well known toxicant from organophosphorous compounds. The nanoparticles were characterized by DLS, UV, FTIR, XRD, SEM and EDAX. FTIR and UV results reveals that the functional properties and the absorbance of NPs. DLS and SEM results reveals that the size and surface morphology of NPs. XRD and EDAX results confirms the structural purity of Ni dopants were substituted into the cubic CuO NPs and the elemental composition. Ni doped CuO is an efficient catalyst for catalytic reduction of TEP using sunlight irradiation and it was monitored by UV VIS spectrophotometer.

Keywords: Ni doped CuO NPs; Hydrothermal method; Decontamination; TEP; Sunlight irradiation

1. INTRODUCTION

Synthesis of bimetal oxide nanoparticles is a field of great interest among researchers due to its catalytic activity and synthesis of transition metal doped with metal oxide nanoparticles gets much more attention in current research. Addition of nickel to copper oxides enhances its strength, durability and also resistance to corrosion. The catalytic activity of Nickel doped copper oxide nanoparticles (Ni doped CuO NPs) is determined by many factors such as temperature, time and preparation of catalyst. The catalytic activity of the material was evaluated by reduction of Triethylphosphate (TEP). This compound is the surrogate of organophosphorous compounds and chemical warfare agents. This compound is an intermediate product for manufacturing of pesticides. This chemical is a hazard for human health and the environment and also is irritating to the skin and eyes. Hence ecofriendly method for effective decontamination of triethylphosphate has to be explored. Semiconductor metal oxides gives excellent adsorption of organophosphonates. The interactions of chemical warfare agent simulants with metal oxide surfaces needs to be studied to understand the destruction of organophosphates using bimetal oxide nanoparticles. Bimetaloxide NPs have been synthesized using various methods like Sol-gel method, Chemical vapour deposition, Chemical reduction method and Wet chemical method.

In this research paper, Nickel doped copper oxide has been synthesized by environmentally safe hydrothermal method under controlled reaction temperature and pressure. The authors were able to achieve a variety of morphologies and particle sizes of NPs. Decontamination of triethylphosphate by the ecofriendly sunlight irradiation technique was attempted.

2. EXPERIMENTAL METHOD

2.1 Raw Materials

All the chemicals used in the research work were of AR grade. Copper chloride hexahydrate (CuCl₂.2H₂O) was purchased from Himedia laboratories and Nickel chloride hexahydrate (NiCl₂.6H₂O) was purchased from Merck laboratories Pvt. Ltd. Both were used as metal source. NaOH, triethylamine and potassium dihydrogen phosphate were purchased from Merck laboratories Pvt. Ltd.

2.2 Preparation

Equal amounts of CuCl₂.2H₂O and NiCl₂.6H₂O were dissolved in 60 mL of 2 M NaOH solution and after 30 minutes, 3mL of triethyl amine was added to the mixture. Subsequently, appropriate amount of Potassium dihydrogen phosphate was introduced into the reaction mixture. The mixture was then transferred into a Teflon-lined autoclave, sealed and heated at 140°C for 20 hrs and then cooled to room temperature. The resultant products were washed and filtered off with absolute ethanol and distilled water and then dried at 60°C for 12 hrs.

3. PHYSICOCHEMICAL CHARACTERISATION

The synthesised nanoparticles were subjected to characterisation studies like conformational changes, functional group, surface morphology, elemental composition and optical behaviour using instruments like X ray diffraction...
spectroscopy (XRD), FT-IR Spectroscopy, Scanning electron Microscopy (SEM), EDAX and UV-Visible Spectroscopy.

Ni doped CuO nanoparticles were subjected to UV Visible spectroscopic studies and found to have λ_{max} at 227 nm as shown in Fig. 1.

DLS data for particle size measurement showed that the synthesized nanoparticles were in the range of 734.9 nm as shown in the Fig. 2.

From the Fig. 6 showing the EDAX profile of Ni doped CuO, it is evident that no other elemental peaks other than Ni, Cu and O were present. The atomic weight composition of elements were Cu 42 per cent, Ni 11 per cent and O 47 per cent. These results confirm the effective doping of Ni into CuO nanoparticles.

4. CATALYTIC REDUCTION OF TEP:

The catalytic activity of Ni doped CuO was investigated by reduction of TEP by sunlight irradiation method. Initially the concentration of catalyst was varied as 10 mg, 25 mg and 50
mg. Catalytic reduction of TEP was also evaluated in different pH and found that pH 5.0 showed complete reduction. The catalytic reduction conditions were optimised to be 50 ml of TEP (50 mM) and 10mg of catalyst at pH 5.0. Time dependent absorption spectra were recorded at room temperature with a time interval of 1h to 5hr. Reduction of TEP was recorded using UV-Vis spectrophotometer (Shimadzu UV 3600). Absorption peak of TEP was obtained at 254 nm as shown in Fig 7(a). Although no change was observed in the control, samples with catalyst showed decrease in the intensity of the TEP peak as shown in Fig 7(b). From these observations, it is proved that Ni doped CuO NPs exhibit significant catalytic activity towards the toxin and the reduction percentage of TEP was calculated as 79 per cent.

5. CONCLUSIONS

- Leaf like crystalline nanoparticles of Ni doped CuO have been successfully synthesized by hydrothermal technique and characterised.
- Catalytic activity of the nanoparticles was proved by complete reduction of the toxin TEP.
- Further studies on confirmation of degraded metabolites using HPLC and GC-MS and scale up for real time applications are under process.

ACKNOWLEDGEMENT

The author Ms. Krishnasamy Lakshmi is thankful to DRDO Ministry of Defence, Govt. of India for providing financial support.

Figure 6. EDS spectrum of Ni doped CuO NPs.

Figure 7. (a) Control-TEP (b) At pH 5.0, catalyst 10 mg.
REFERENCES

CONTRIBUTORS

Dr K. Kadirvelu has received his PhD from Bharathiar University, in 1998 and he has completed Post doctoral research at France, in 2000. Currently he is working as Scientist ‘F’ at DRDO-BU Center for Life Sciences. His current area of research interests includes Heavy metal removal, environmental remediation, nanomaterials, activated carbon, activated carbon nanofiber, polmer based nanofibers, quantum dots, bacterial cellulose, chemical sensing and biosensing. He has been a supervisor for this work and has chosen an appropriate research problem which is to be addressed. His contribution also includes the guidance throughout the work and the correction of manuscript.
Ms K. Lakshmi has completed her MSc (Organic Chemistry) at Bharathiar University, Coimbatore, in 2009. Currently she is a JRF in DRDO BU CLS and pursuing Ph.D in Bharathiar University. Currently she is doing nanofibers for decontamination of hazardous chemicals. Her area of research interests are Nanofibers, Metal oxide nanoparticles, Environmental remediation, Photocatalysis. She has done all the experimental part and written the manuscript by addressing the research outputs.

Dr P.S. Mohan obtained his MSc and MPhil from Madras University. He completed his PhD in Bharathiar University, in 1988. Currently he serves as Head of the Department and Dean- Research, Bharathiar University. His area of interests are synthetic organic chemistry, photochemistry, natural products chemistry and spectroscopy. He has published more than 86 research articles in National and International journals of high standard. His contribution also includes the guidance throughout the work and the correction of manuscript.