Advances in Electromagnetic Therapy for Wound Healing

Bala Madduri, Avnika Singh Anand, Himani Kohli, Manan Oza, Satish Chauhan, Amitabh, Ekta Kohli*, and Sanjeev Kumar Sharma

DRDO-Defence Institute of Physiology & Allied Sciences, Delhi-110054, India
*E-mail: ektakohli@hotmail.com

ABSTRACT

Understanding the molecular basis of wound healing and tissue regeneration continues to remain as one of the major challenges in modern medicine. Wound healing is a complex procedure involving various cellular mechanisms. Though high frequency electromagnetic fields are reported to cause cancer, birth defects and DNA damage, electromagnetic field at low intensity and low frequency can be effectively used for wound healing and for many more medical applications. Low intensity-low frequency pulsed electromagnetic therapy is evidenced to have a significant impact on wound repair and regeneration. It provides a non-invasive reparative technique to treat an injury. In vitro studies reported a significant effect of electromagnetic field on neovascularisation and angiogenesis. There are also many pieces of evidence which support its efficiency in reducing the duration of wound healing and improving the tensile strength of scars. Here, we compared the traditional stigma associated with pulsed electromagnetic fields and weighed them with its potential therapeutic effect on wound healing. Furthermore, emphasised the need for more focused research to determine the therapeutic strategies and optimised parameters of pulsed electromagnetic field that can assure efficient wound healing and regeneration.

Keywords: Electromagnetic field; Pulsed electromagnetic field; Extremely low frequency electromagnetic field

NOMENCLATURE

ICNIRP International Commission on Non-Ionising Radiation Protection
TMS Transcranial magnetic stimulation
IARC International Agency for Research on Cancer
HUVECs Human Umbilical Vein Endothelial Cells
FGF-2 Fibroblast Growth Factor 2
RANTES Regulated on Activation, Normal T Cell Expressed and Secrete
MCP-1 Monocyte Chemoattractant Protein-1
MIP-1α Macrophage Inflammatory Protein 1α
IL-8 Interleukin 8

1. INTRODUCTION

An accelerated charged particle produces magnetic field. Similarly, time varying magnetic field can produce electrical energy. Synchronised oscillations of varying electric and magnetic field, mutually perpendicular to one another, produce an electromagnetic field in a direction right angle to both the fields. We are constantly surrounded by these non-thermal, low power-frequency fields including radiofrequency/microwave radiation emissions (RF) in our daily life. They are deeply embedded in our lifestyle through power distribution networks, industrial machinery and electrical appliances, household electrical wiring, motor-driven instruments, computer screens, telecommunications and broadcasting facilities, wireless communication, and mobile telephones etc. It has been one of the major concerns of environmental health hazards since the 1970’s. Studies have shown a possible role of high intensity Pulsed EMF in cancer incidence and fetal loss which continues to bewilder the scientific community. In contrast, low intensity extremely low-frequency electromagnetic field (ELF-EMF) is bearable by living organisms without any pernicious effects and its contribution towards signal transduction, protein synthesis, and gene expression can have an ameliorating effect on cell growth and regeneration. ELF-EMF is also suggested as a therapeutic alternative to Transcranial magnetic stimulation (TMS) in spinal cord injury. In spite of the huge amount of data dealing with the biological effects of the electromagnetic fields, the potential therapeutic role of ELF-EMF in wound healing continue to remain a subject of exploration as shown in Fig. 1.

1.1 Wounds and Wound Healing

Clinically, a wound can be any tissue injury resulting in the disruption of the skin, damaging and penetrating through the epidermis and dermis layers exposing the underlying tissues or organs. Depending on the cause, site, and depth, wounds can be superficial or deep, acute or chronic ranging from simple to life threatening consequences. This anatomic discontinuity of the skin is restored meticulously by the cohesive process of wound healing which may vary significantly depending on the nature of the wound. However, the major activity of conventional wound healing remains the same which can be classified into

Received : 22 July 2017, Revised : 25 January 2018
Accepted : 28 January 2018, Online published : 25 June 2018
haemostasis, inflammation, proliferation, epithelialisation and remodelling. Resident cells along the wound edges (including keratinocytes, fibroblasts, and endothelial cells) in collaboration with macrophages play a significant part in wound healing process.

Figure 1. Effects of exposure to electromagnetic fields.

On investigating the chronic wound microenvironment, many physiological differences compared to a normally healing wound surfaced. In such wounds, the conventional course of wound healing may be arrested at any stage but most frequently it is arrested at the inflammatory stage, resulting in the accumulation of devitalised tissue, decreased angiogenesis, increased levels of proteases, imbalance of growth factors and cytokines, defective extracellular matrix and presence of infection at outer surface which prevents the adequate cellular response of chronic wounds to healing stimuli. ELF-EMF has been reported to be effective in healing chronic wounds. An overview of the effect of ELF-EMF in wound healing emphasising the pressing need to standardise electromagnetic therapy for wound healing purposes is presented.

1.2 Effect of Electromagnetic Field on Biomolecules

Electromagnetic field plays a crucial role in the cascade of cellular processes involving cell migration, adhesion and differentiation. The passive uptake of Na$^+$ ions from the environment generates a current leading to an internally positive trans-epithelial potential difference (TEP), the gradient of which plays an important role in various cellular processes and neural impulses. Also the asymmetrical distribution of K$^+/H^+$-ATPase generates a crucial potential. These endogenous electric field also exist at the site of wound, which are disturbed due to the disruption of TEP in the epithelial layer. At the site of injury the electric potential collapses which in a healthy tissue varies between 1-5 V/cm, however, with an increase in distance from the wound this potential raises to that of healthy cells. EMF can interfere with these potentials at the wounded site and help restore them at an accelerated pace. It may interact by
(a) Energy transfer accelerates ions and charged proteins, modifies cell membranes and receptor proteins
(b) Electric fields induced inside the body exert force on charged proteins and ions
(c) Magnetic field induces an electric field (by Faraday’s law) and interacts with free radical molecules.

However, it is important to realise that EMF can induce beneficial physiological effects only at extremely low frequency (8 Hz – 60 Hz) and low amplitudes (less than 1Gs).

2. ELF-EMF THERAPY

We are constantly surrounded by ELF-EMF radiations emancipating from various sources. The EM spectrum spans a huge range of frequencies and wavelengths. Literature suggests that the frequency range of 3 Hz - 300 Hz termed as extremely low frequency (ELF) is useful for medical applications. Pulsed electromagnetic field (PEMF) is a non invasive reparative technique commonly used by many practitioners and researchers for different biomedical applications. Every PEMF system essentially consists of 3 modules namely: waveform generator, coil driver circuit and magnetic field exposure system which is generally a pair of coils. Before designing an instrument, one must identify the various physical parameters which need to be optimised for different biological experiments. These parameters could include waveform type (sine, square, saw tooth and triangular), frequency, time of exposure and most importantly, the magnetic field intensity or strength. The required magnetic field strength is decided using ICNIRP guidelines. The most important part while designing and fabricating an exposure system is the coil system. The size, shape and type of coil system can be decided according to the biological system which needs to be exposed. The generated field must be uniform for whole body exposure in order to have consistent results. Circular coil systems such as Helmholtz coil are used for generating magnetic fields over a small volume whereas square coil systems such as Meritt and Ruben coil generate magnetic field over a large volume. Scientists generally prefer Helmholtz coil over other systems due to ease of construction and uniform magnetic field.

There are various EMF generators available in the market resulting in non-linearities in intensity, amplitude, frequency, and wave shape of the signal. This is creating a barrier in extrapolating the in vitro and in vivo studies to clinical set up.

3. CRITICAL EFFECTS OF EMF EXPOSURE

The growing electricity demand and ever-advancing technologies as shown in Fig. 2, created more and more artificial sources exposing the environment to man-made electromagnetic fields. Scientific community explored the detrimental effects of these waves suggesting its carcinogenic potential. The essential cellular processes including proliferation, morphology, apoptosis, gene expression and differentiation are plausibly affected by EMF. Also, the increased intracellular Ca$^{2+}$ levels, prolonged survival of reactive oxygen species and other free radicals following EMF exposure are well documented. According to the Bio Initiative report, ELF-EMF exposure may culminate in health endpoints including childhood leukemia, brain tumors, genotoxic effect, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, breast cancer, fetal loss...
and miscarriage, and some cardiovascular effect affecting every major organ/organ system in human body17 as shown in Fig. 3.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{common_sources.png}
\caption{Common sources of electromagnetic fields.}
\end{figure}

\section*{4. Therapeutic Role of Electromagnetic Field}
Though ELF-EMF is being scrutinised for its carcinogenic potential and its relationship with immune system functions, they are widely used for diagnosis (magnetic resonance imaging- MRI, scanner, and microwave imaging) and treatment of some pathological conditions to stimulate neural regeneration, tissue and bone repair19. Electromagnetic therapy has various medical applications; as a matter of fact, it provides an easy and noninvasive technique to treat an injury19. PEMF in low frequency and intensity range (micro-tesla) increases blood oxygenation, improves its circulation, enhances cell metabolism and function, and assuages pain and fatigue from fibromyalgia. It can effectively improve symptoms pertaining to nervous system including treatment-resistant depression and multiple sclerosis20. EMFs have shown to facilitate the re-establishment of normal potentials in damaged cells21; this property can be suavely exploited in the area of orthopedics in the treatment of non-uniform fractures and failed fusions. In fact, EMF improves osteogenic phase of the healing process22 by favouring the bone formation and healing through increased blood flow23, proliferation, differentiation and maturation of osteoblasts24. It can even accelerate the recovery of the tensile strength after tendon injury25.

The physiological effects of EMF exposure depend not only on the wave form properties (frequency, amplitude, intensity and length of exposure) but also on the intrinsic susceptibility/responsiveness of the cell type. In mononuclear blood cells EMF exposure had no effect on the cytokine levels26 whereas a growth inhibitory effect has been observed in T-lymphocytes27. Several studies have reported that EMF exposure can alter intracellular Ca2+ homeostasis; significant increase in intracellular Ca2+ levels have been observed in various immune cell-models28 whereas, contradicting observations have surfaced from studies of neuroendocrine cells29. Also, in contrast to the common belief that ELF-EMF exposure causes mutations to organisms, Chow and Tung have demonstrated that low frequency magnetic fields can actually enhance the efficiency of DNA repair through the induction of DnaK/J synthesis30.

In general, regeneration and repair stimulation is one of the well-documented biological effects of EMFs. The variability in the therapeutic results on exposure of different tissues for repair by EMF has varying and sometimes contradicting results due to the involvement of several cell types that may differentially respond to the EMF stimulus. Bertolino31, et al. highlighted the effect of vascularisation, reduction in wound depth by granulation tissue, and reduced inflammatory cell migration and infiltration as shown in Fig. 4.

\section*{4.1 Effect of ELF-EMF on Pain}
Evidence supporting the analgesic effects of ELF-EMF has been growing lately, as it alleviates pain caused by psoriasis, tendonitis and rheumatoid arthritis32-33 showed that mice exposed to EMF (100 µT x 30 min) displayed increased latency towards the hot plate test. They also observed a decrease in pain following a brief EMF exposure (30 min) in humans. A burst firing ELF-EMF exposure for 30 min increased the pain threshold for 4h after a single exposure. Mathur34, et al. as showed that naloxone (opioid antagonist) pretreatment reversed the effect of ELF-EMF exposure. Therefore, opioid-mediated factors are crucial for the electromagnetic anti-nociception research.
4.3 Effect of ELF-EMF on Angiogenesis

As the formation of new blood vessels is crucial for wound healing as well as in osteoarthritis or diabetic retinopathy, exploring the consequences of EMF exposure on the stimulation of angiogenesis becomes increasingly significant. The use of EMFs to treat ulcers unresponsive to the conventional therapies as it increased the superficial vascular network on the skin reinforcing the competence of EMF in wound healing.

The important events in angiogenesis, cell proliferation and cell migration, including the reorganisation of actin into stress fibers, long filaments that transverse the cell are positively affected by EMF stimulation. Delle Monache et al. demonstrated that sinusoidal EMF (1 mT, 50 Hz for up 12 h) induced an increase in the rate of capillary structure formation in cultured umbilical human vein endothelial cells (HUVECs). They observed an exposure and time-dependent increase in the number of connections and the proliferation rate of HUVECs, which confirmed increase in proliferation and tubulisation of endothelial cell cultures and the increase in the expression of fibroblast growth factor 2 (FGF-2), a potent stimulator of angiogenesis, after exposure to electromagnetic field. EMF also induced structural alterations in the cytoskeleton actin stress fibers and focal adhesions, elements crucial for the survival, proliferation, movement and differentiation of the endothelial cells.
proliferation and the expression of inflammatory chemokine levels, EMF exposure a non-invasive therapy could be used to treat inflammatory skin conditions.

5. MODEL ORGANISM

Among the various model organisms available the conventional Rattus norvegicus and Mus musculus are the major ones. Laboratory rats (Rattus norvegicus) and mice (Mus musculus) were extensively used to study various physiological processes and interpret the pharmacological significance of EMF exposure because of their close genetic and physiological similarities to humans, as well as the ease with which its genome can be manipulated and analysed.

Drosophila melanogaster being the queen of genetics has been rigorously used to study the effect of EMF on life span, fecundity and neurodegeneration. It is one of the major model organisms to study the process of wound healing owing to the close resemblance between the ‘purse-string’ assembly of epithelial fusion during wound healing process and the naturally occurring morphogenetic movement of dorsal closure in Drosophila embryogenesis.

Towards the end of embryogenesis, germ band retraction leaves an epithelial hole on the dorsal side of the embryo, covered with an extraembryonic tissue, the amnioserosa. The two epidermal flanks converge dorsally without cell proliferation resulting in the complete removal of amnioserosa and progressive fusion of the epidermal layer. The phenomenon was first characterised in early 90’s and it has been studied extensively since then due to its remarkable similarities with wound healing, making Drosophila an ideal model organism to validate the effect of ELF-EMF on wound healing.

5.1 ELF-EMF and Drosophila

For over a century now, Drosophila has been used productively as a model organism to study a diverse range of biological processes including genetics and inheritance, embryonic development, learning, behaviour, and aging.

Ramirez et al. subjected fruit fly to relatively high field intensity (10 G - 45 G) at two different frequencies (50 Hz and 100 Hz) of mixed pulsed and sinusoidal fields without considering the alignment of the AC and the DC fields in the experimental design and claimed that the egg mortality rate of the exposed group was significantly higher than the control groups.

Kholy and Hussein through their experiments showed significant behavioural changes (reduced locomotor activity and behavioural response to odors) in Drosophila melanogaster concomitant with its reduced viability. They, however, proposed no significant effect on adult fecundity on exposure to EMF emancipating from household electrical appliances. EMF exposure (30 G and 50 Hz) followed by transcriptomic analysis evidenced differentially expressed genes involved in the metabolic process, cell death, protein modification and proteolysis, apoptosis, aging, immunological stress and cell division.

However, based on the diversity of the experimental design, frequencies of the AC field intensity, qualities of the EMF, biological systems and the end points used by various investigators these results can be misleading as ELF-EMF exposure now promises applications that include mitigation of inflammation and stimulation of classes of genes following onset of illness and injury.

5.2 ELF-EMF and Rattus Norvegicus

Extensive research has been done using the rat as a model organism on the potential effects of ELF-EMF on wound healing. Injured area significantly decreased in PEMF exposed animals compared to the control groups. This was further supported by Callaghan et al. who evidenced through their findings that PEMF accelerated the overall healing of wounds, particularly during the early stages of tissue repair process (up to 9 days). PEMF exposure improved the histological organization of the wounded tissues resulting in the accelerated and complete epithelialisation aided by increased skin collagen synthesis after 12 days of PEMF exposure (25 Hz, 2 mT, 8 days, 2.5 h/day).

A few studies were conducted on diabetic mouse models and PEMF exposure notably increased the tensile strength of scar resulting in increased rate of wound healing. PEMF exposure up-regulates key angiogenesis factor (FGF-2) involved in tissue repair and prevents tissue necrosis and breakdown in diabetic animals in response to standard ischemic results.

In vivo results available so far suggest that PEMF has a significant impact on all the three levels in the process of wound healing. It reduces tissue inflammation (inflammatory phase); increases angiogenesis epithelialisation and neovascular network formation (proliferative phase); accelerates collagen formation, inducing better fibre organisation (remodelling phase). The literature reported so far indicate that the beneficial effects of PEMF in rebuilding the damaged tissue are limited to the subset of low-frequency (3-80 Hz) and intensity (up to a maximum of 20 mT) and anything above this range is reported to have a detrimental effect on the physiology of the animal.

5.3 ELF-EMF and Human Clinical Studies

The clinical studies performed so far have gravitated on the healing of ulcers and have reported a significant benefit in pulsed electromagnetic field (PEMF) exposed patients as compared to the control group.

The success rate of healing leg ulcers exposed to PEMF was significantly higher compared to patients in the control group. It was also demonstrated that PEMF treatment protected patients from ulcer recurrence compared to the placebo group. Stiller et al. documented that patients with recalcitrant leg ulcers, when treated with PEMF, reported a decrease in pain intensity and wound depth compared to those in the control group. They also have reported that none of the patients exposed to PEMF exhibited worsening of lesions which made a significant difference compared to the placebo group.

Reports available so far suggest that the ELF-EMF treatment is effective only in patients with chronic ulcers, particularly venous origin which is also limited by the presence of associated co-morbidities. Treatment efficiency may also rely on the device and specific combination of field parameters which further have to be validated and established.
6. CONCLUSIONS

In the current review, we have presented an overview of the cellular, molecular and physiological impacts of ELF-EMF exposure with an emphasis on its potential therapeutic role and advantage in the process of wound healing. It has been reported in the in vitro studies to have a clinically beneficiary role in anti-inflammatory, pro-angiogenesis and collagen formation during tissue repair and regeneration. The in vitro, in vivo and the clinical studies, reported so far could not be pooled in a meta-analysis due to the disparate etiology of wound healing, diverse and varied therapeutic protocols, work parameters, and treatment duration. Electromagnetic therapy is still failing to have clinical applications mainly due to the nonlinearities in the intensity, amplitude, frequency parameters of the device used and the wave shapes of the signal advised. The wide-ranging commercially available ELF-EMF/PEMF devices make it difficult to standardise and compare its characteristics and delineate the biological and clinical effects they induce on the human physiology.

Conflict of Interest: None

REFERENCES

28. Barbier, E.; Dufy, B. & Veyret, B.; Stimulation of Ca
+ +
27. Norimura, T.; Imada, H.; Kunugita, N. & Yoshida, N. M.
26.
doi: 10.1016/j.biopsych.2010.02.017
doi: 10.1002/jor.1100110508
doi: 10.1016/j.biopsych.2010.02.017
doi: 10.1016/S0014-5793(00)01822-6
doi.org/10.1016/j.neulet.2004.05.054
doi.org/10.1016/j.neulet.2003.09.063
doi: 10.1002/bem.21832
doi: 10.1002/bem.20567
doi: 10.1016/j.jhsa.2006.03.024
doi: 10.1002/jr.20567
doi: 10.1002/bem.20246
doi: 10.1097/AJP.0b013e3181a68a6c
doi: 10.1002/bem.21832
doi: 10.1002/bem.20567
doi: 10.1097/01prs.0000267700.15452.d0
doi: 10.1016/S0188-4409(02)00357-0
doi: 10.1002/bem.2250091015
doi: 10.1002/bem.20246
49. Tepper, O. M.; Callaghan, M. J.; Chang, E. I.; Galiano, R. D.; Bhatt, K.; Baharestani, S.; Gan, J.; Simon, B.; Hopper, R.; Levine, J. P. & Gurtner, G. C. Electromagnetic fields increase in vitro and in vivo angiogenesis through...

CONTRIBUTORS

Ms Bala Madduri is currently pursuing her PhD in Institute of Microbiology and Infection, University of Birmingham. She is working on host-pathogen interactions in *Mycobacterium tuberculosis* infected macrophages. She has contributed in writing of the manuscript.

Ms Avniki Singh Anand is currently working as DST INSPIRE research fellow at DRDO-Defence Institute of Physiology and Allied Sciences. She is working on toxicity of metal oxide nanoparticles using *Drosophila melanogaster* as model organism. She has contributed in writing of the manuscript.

Ms Himani Kohli is currently working as Senior Research Fellow at DRDO-Defence Institute of Physiology and Allied Sciences, DRDO. She is working on electronic design of non pharmacological devices for biomedical applications. She has contributed in writing of the manuscript.

Mr Manan Oza is currently working as Scientist ‘C’ at DRDO-Defence Institute of Physiology and Allied Sciences. His major research area is biomedical instrumentation, high altitude engineering and cognitive neuroscience. He has publications in various journals and patent to his credit. He has contributed in drafting and reviewing the manuscript.

Mr Satish Chauhan is currently working as Scientist ‘D’ at DRDO-Defence Institute of Physiology and Allied Sciences. His major research area is biomedical instrumentation, high altitude engineering and cognitive neuroscience. He has publications in various journals and patent to his credit. He has contributed in reviewing the manuscript.

Mr Amitabh is currently working as Technical Officer at Department of Neurobiology, DRDO-Defence Institute of Physiology and Allied Sciences. His major research area is neurobiology and high altitude. He has contributed in reviewing the manuscript.

Dr Ekta Kohli is currently working as Scientist ‘E’ at DRDO-Defence Institute of Physiology and Allied Sciences. Her major research area is nanotechnology and toxicology. She has publications in journals, chapters, and patent to her credit. She has contributed in drafting writing, and reviewing of the manuscripts.

Mr Sanjeev Kumar Sharma is currently working as Scientist ‘F’ and Head of Biomedical Instrumentation Department at DRDO-Defence Institute of Physiology and Allied Sciences. His major research area is high altitude physiology and biomedical instrumentation. He has several publications in journals and patent to his credit. He has contributed in drafting and reviewing the manuscript.